Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2091–2102 | Cite as

Real-Time Control of Pressure Plant Using 2DOF Fractional-Order PID Controller

  • Kishore BingiEmail author
  • Rosdiazli Ibrahim
  • Mohd Noh Karsiti
  • Sabo Miya Hassan
  • Vivekananda Rajah Harindran
Research Article - Electrical Engineering


Control of real-time pressure process is quite challenging due to high nonlinearity and sensitivity. PID controllers being the most employed for industrial applications have the potential for control of such processes. This is due to the PID’s advantages of simple structure, ease of tuning and implementation. However, its performance degrades during set-point change and high external disturbances due to high sensitivity and nonlinearity of the pressure plant. Therefore, this paper proposes the two-degree-of-freedom fractional-order PID (2DOF–FOPID) controller for real-time control of pressure process in both parallel and series configurations. Furthermore, the controller parameters are obtained experimentally using Ziegler–Nichols and closed-loop set-point approaches. The controller has the advantages of improving set-point tracking and disturbance rejection performance through smoother control action over the conventional PID. From the real-time experimental results obtained, the proposed approach outperforms PID, fractional-order PID and 2DOF-PID controllers in terms of overshoot and settling time. Hence, the approach has better set-point tracking ability and disturbance rejection capability. Furthermore, the control action of the approach is less affected by undesired oscillations and derivative kick effect thereby extending the life of actuator.


Fractional ordering PID controller Pressure plant Process control Two-degree-of-freedom 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moradi, H.; Setayesh, H.; Alasty, A.: PID-Fuzzy control of air handling units in the presence of uncertainty. Int. J. Therm. Sci. 109, 123–135 (2016)CrossRefGoogle Scholar
  2. 2.
    Zhang, J.: Design of a new PID controller using predictive functional control optimization for chamber pressure in a coke furnace. ISA Trans. 67, 208–214 (2017)CrossRefGoogle Scholar
  3. 3.
    Kanagaraj, N.; Sivashanmugam, P.; Paramasivam, S.: A fuzzy logic based supervisory hierarchical control scheme for real time pressure control. Int. J. Autom. Comput. 6(1), 88–96 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kanagaraj, N.; Sivashanmugam, P.; Paramasivam, S.: Fuzzy coordinated PI controller: application to the real-time pressure control process. Adv. Fuzzy Syst. 1, 1–9 (2008)zbMATHGoogle Scholar
  5. 5.
    Zou, H.; Li, H.: Improved PI-PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit. ISA Trans. 67, 215–221 (2017)CrossRefGoogle Scholar
  6. 6.
    Shah, P.; Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)CrossRefGoogle Scholar
  7. 7.
    Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43(6), 2687–2701 (2018)CrossRefGoogle Scholar
  8. 8.
    Åström, K.J.; Hägglund, T.: Advanced PID Control. ISA-The Instrumentation Systems and Automation Society (2006)Google Scholar
  9. 9.
    Alfaro, V.M.; Vilanova, R.: Model-Reference Robust Tuning of PID Controllers. Springer, Berlin (2016)CrossRefGoogle Scholar
  10. 10.
    McMillan, G.K.: Industrial applications of PID control. In: PID Control in the Third Millennium, pp. 415–461. Springer (2012)Google Scholar
  11. 11.
    Visioli, A.: Practical PID Control. Springer, Berlin (2006)zbMATHGoogle Scholar
  12. 12.
    Vilanova, R.; Visioli, A.: PID Control in the Third Millennium: Lessons Learned and New Approaches. Springer, Berlin (2012)CrossRefGoogle Scholar
  13. 13.
    Li, M.; Zhou, P.; Zhao, Z.; Zhang, J.: Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time. ISA Trans. 61, 147–154 (2016)CrossRefGoogle Scholar
  14. 14.
    Alfaro, V.M.; Vilanova, R.: Model-reference robust tuning of 2DoF PI controllers for first-and second-order plus dead-time controlled processes. J. Process Control 22(2), 359–374 (2012)CrossRefGoogle Scholar
  15. 15.
    Padula, F.; Visioli, A.: Set-point weight tuning rules for fractional-order PID controllers. Asian J. Control 15(3), 678–690 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Araki, M.; Taguchi, H.: Two-degree-of-freedom PID controllers. Int. J. Control Autom. Syst. 1(4), 401–411 (2003)Google Scholar
  17. 17.
    Azarmi, R.; Tavakoli-Kakhki, M.; Sedigh, A.K.; Fatehi, A.: Analytical design of fractional order PID controllers based on the fractional set-point weighted structure: case study in twin rotor helicopter. Mechatronics 31, 222–233 (2015)CrossRefGoogle Scholar
  18. 18.
    Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, Y.; Petras, I.; Xue, D.: Fractional order control-a tutorial. In: American Control Conference, 2009. ACC’09., pp. 1397–1411. IEEE (2009)Google Scholar
  20. 20.
    Bingi, K.; Ibrahim, R.; Karsiti, M.; Hassan, S.: Fractional-order filter design for set-point weighted PID controlled unstable systems. Int. J. Mech. Mechatron. Eng. 17(5), 173–179 (2017)Google Scholar
  21. 21.
    Sikander, A.; Thakur, P.; Bansal, R.; Rajasekar, S.: A novel technique to design cuckoo search based fopid controller for avr in power systems. Comput. Electr. Eng. (2017).
  22. 22.
    Kumar, G.; Arunshankar, J.: Control of nonlinear two-tank hybrid system using sliding mode controller with fractional-order pi-d sliding surface. Comput. Electr. Eng. (2017).
  23. 23.
    Padula, F.; Visioli, A.: Set-point filter design for a two-degree-of-freedom fractional control system. IEEE/CAA J. Autom. Sin. 3(4), 451–462 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sharma, R.; Gaur, P.; Mittal, A.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)CrossRefGoogle Scholar
  25. 25.
    Geng, F.; Zhu, X: Research on fractional order two-degrees-of-freedom flight control technology of unmanned air vehicle. In: Computer Science and Information Processing (CSIP), 2012 International Conference on, pp. 807–812. IEEE (2012)Google Scholar
  26. 26.
    Debbarma, S.; Saikia, L.C.; Sinha, N.: Automatic generation control of multi-area system using two degree of freedom fractional order PID controller: a preliminary study. In: Power and Energy Engineering Conference (APPEEC), 2013 IEEE PES Asia-Pacific, pp. 1–6. IEEE (2013)Google Scholar
  27. 27.
    Debbarma, S.; Saikia, L.C.; Sinha, N.; Kar, B.; Datta, A.: Fractional order two degree of freedom control for AGC of an interconnected multi-source power system. In: Industrial Technology (ICIT), 2016 IEEE International Conference on, pp. 505–510. IEEE (2016)Google Scholar
  28. 28.
    Debbarma, S.; Saikia, L.C.; Sinha, N.: Automatic generation control using two degree of freedom fractional order PID controller. Int. J. Electr. Power Energy Syst. 58, 120–129 (2014)CrossRefGoogle Scholar
  29. 29.
    Dwivedi, P.; Pandey, S.; Junghare, A.: Performance analysis and experimental validation of 2-DOF fractional-order controller for underactuated rotary inverted pendulum. Arab. J. Sci. Eng. 42(12), 5121–5145 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ates, A.; Yeroglu, C.: Online tuning of two degrees of freedom fractional order control loops. Balk. J. Electr. Comput. Eng. 1(4), 5–11 (2016)Google Scholar
  31. 31.
    Pandey, S.; Dwivedi, P.; Junghare, A.: A novel 2-DOF fractional-order PI\(\lambda \)-D\(\mu \) controller with inherent anti-windup capability for a magnetic levitation system. AEU Int. J. Electron. Commun. 79, 158–171 (2017)CrossRefGoogle Scholar
  32. 32.
    Rasouli, H.; Fatehi, A.: Design of set-point weighting PI\(\lambda \)+ D\(\mu \) controller for vertical magnetic flux controller in Damavand tokamak. Rev. Sci. Instrum. 85(12), 123508 (2014)CrossRefGoogle Scholar
  33. 33.
    Pachauri, N.; Singh, V.; Rani, A.: Two degrees-of-freedom fractional-order proportional-integral-derivative-based temperature control of fermentation process. J. Dyn. Syst. Meas. Control 140(7), 071006 (2018)CrossRefGoogle Scholar
  34. 34.
    Tepljakov, A.; Petlenkov, E.; Belikov, J.: FOMCON: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)Google Scholar
  35. 35.
    Oustaloup, A.; Melchior, P.; Lanusse, P.; Cois, O.; Dancla, F.: The CRONE toolbox for MATLAB. In: Computer-Aided Control System Design, 2000. CACSD 2000. IEEE International Symposium on, pp. 190–195. IEEE (2000)Google Scholar
  36. 36.
    Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  37. 37.
    Xue, D.; Chen, Y.; Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. SIAM (2007)Google Scholar
  38. 38.
    Alfaro, V.M.; Vilanova, R.: Conversion formulae and performance capabilities of two-degree-of-freedom PID control algorithms. In: Emerging Technologies and Factory Automation (ETFA), 2012 IEEE 17th Conference on, pp. 1–6. IEEE (2012)Google Scholar
  39. 39.
    Tan, K.K.; Wang, Q.G.; Hang, C.C.: Advances in PID Control. Springer, Berlin (2012)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringUniversiti Teknologi PETRONASTronohMalaysia
  2. 2.Department of Electrical and Electronics EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria
  3. 3.Sr. Custodian Engineer, Instrumentation and Control, PETRONAS Group Technical SolutionsKuala LumpurMalaysia

Personalised recommendations