Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2115–2129 | Cite as

Performance Enhancement of PV-Fed Unified Power Quality Conditioner for Power Quality Improvement Using JAYA Optimized Control Philosophy

  • Santanu Kumar DashEmail author
  • Pravat Kumar Ray
Research Article - Electrical Engineering
  • 48 Downloads

Abstract

In this paper, the operation and control of photovoltaic-fed unified power quality conditioner in grid-connected mode including the power quality enhancement feature has been systematically examined. The current harmonics, voltage sags, voltage swells, voltage unbalance, dc-link voltage regulation are the primary factors limiting the performance of the AC system. Therefore, these power quality issues are needed to be eliminated by high-performance power conditioners controlled through highly effective control strategies. In this paper, an optimization algorithm is used to amplify the controller performance by achieving the best numerical parameters for proportional plus integral controller of PV-UPQC. Detail analysis involving elimination of current harmonics, voltage sags and voltage swells are investigated to analyze the effect of novel optimization algorithm on controller of photovoltaic-fed unified power quality conditioner system. In addition, this paper proposes double second-order integral quadrature signal generator-based phase-locked loop mechanism for proper grid synchronization. Finally, experimental verification of the performance of the proposed scheme by hardware prototype development has been included.

Keywords

Current harmonics JAYA optimization Power quality PV-UPQC Voltage sag/swell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akagi, H.: Morden active filters and traditional passive filters. Bull. Tech. Sci. 54(3), 255–269 (2006)Google Scholar
  2. 2.
    Panda, G.; Ray, P.K.; Puhan, P.S.; Dash, S.K.: Novel schemes used for estimation of power system harmonics and their elimination in a three-phase distribution system. Int. J. Electr. Power Energy Syst. 53, 842–856 (2013)CrossRefGoogle Scholar
  3. 3.
    Zobaa, A.F.: Optimal multiobjective design of hybrid active power filters considering a distorted environment. IEEE Trans. Ind. Elecron. 61(1), 107–114 (2014)CrossRefGoogle Scholar
  4. 4.
    Fujita, H.; Akagi, H.: The unified power qulaity conditioner: the integration of shunt and series filters. IEEE Trans. Power Electron. 13(2), 315–322 (1998)CrossRefGoogle Scholar
  5. 5.
    Han, B.: Bae new configuration of UPQC for medium-voltage application. IEEE Trans. Power Deliv. 21(3), 1438–1444 (2006)CrossRefGoogle Scholar
  6. 6.
    Chandra, K.A.; Barry, A.O.; Nguyen, T.D.: Power quality enhancement utilizing single-phase unified power quality conditioner: digital signal processor-based experimental validation. IET Power Electron. 4(3), 323–331 (2011)CrossRefGoogle Scholar
  7. 7.
    Hamid, M.I.; Jusoh, A.; Anwari, M.: Photovoltaic plant with reduced output current harmonics using generation-side active power conditioner. IET Power Electron. 6(7), 817–826 (2011)Google Scholar
  8. 8.
    Chakraborty, S.; Simoes, M.G.: Experimental evaluation of active filtering in a single phase high frequency AC microgrid. IEEE Trans. Energy. Convers. 24(3), 673–682 (2009)CrossRefGoogle Scholar
  9. 9.
    Duc Tuyen, N.; Fujita, G.: PV-active power filter combination supplies power to nonlinear load and compensates utility current. IEEE Power Energy Technol. Syst J. 2(1), 32–42 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, C.-S.; Lin, C.H.; Hsieh, W.-L.; Hsu, C.T.; Ku, T.-T.: Enhancement of PV penetration with DSTATCOM in Taipower distribution system. IEEE Trans. Power Syst. 28(2), 1560–1567 (2013)CrossRefGoogle Scholar
  11. 11.
    Devassy, S.; Shing, B.: Modified p-q theory based control of solar PV integrated UPQC-S. In: Proceedings of IEEE Industry Application Society Annual Meeting, pp. 1–8 (Oct. 2016)Google Scholar
  12. 12.
    Dash, S.K.; Ray, P.K.; Mishra, S.; Beng, G.H.: UPQC-PV Solving power quality issues based on system generator FPGA Controller. In: Proceedings of IEEE ICPEICES, pp. 1–6 (July 2016)Google Scholar
  13. 13.
    Kesler, M.; Ozdemir, E.: Synchronous reference frame based control method for UPQC under unbalanced and distorted load conditions. IEEE Trans. Ind. Electron. 58(9), 3967–3975 (2011)CrossRefGoogle Scholar
  14. 14.
    Pal, Y.; Swarup, A.; Shing, B.: Performance of UPQC for power quality improvement. In: Proceedings of IEEE PEDES, pp. 1–7 (Dec. 2010)Google Scholar
  15. 15.
    Ansari, A.Q.; Singh, B.; Hasan, M.: Algorithm for power angle control to improve power quality in distribution system using unified power quality conditioner. IET Power Electron. 9(12), 1439–1447 (2015)Google Scholar
  16. 16.
    Trinh, Q.-N.; Lee, H.-H.: Improvement of unified power quality conditioner performance with enhanced resonant control strategy. IET Gener. Trans. Distrib. 8(12), 2114–2123 (2014)CrossRefGoogle Scholar
  17. 17.
    Dash, S.K.; Ray, P.K.: Design and analysis of grid connected photovoltaic fed unified power quality conditioner. Int. J. Emerg. Electr. Power Syst. 17(3), 301–310 (2016)Google Scholar
  18. 18.
    Dash, S.K., Ray, P.K., Panda, G.: DS1103 Real-time operation and control of photovoltaic fed unified power quality conditioner. In: Proceedings of IEEE TENCON, pp. 3424–3428 (Nov. 2016)Google Scholar
  19. 19.
    Mishra, S.; Ray, P.K.;, Dash S.K.: A TLBO optimized PV fed DSTATCOM for power quality improvement. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi Technological University (2016)Google Scholar
  20. 20.
    Mishra, S.; Ray, P.K.: Power quality improvement using photovoltaic fed DSTATCOM based on Jaya optimization. IEEE Trans. Sustain. Energy 7(4), 1672–1680 (2016)CrossRefGoogle Scholar
  21. 21.
    Rodríguez, P.; Teodorescu, R.; Candela, I.; Timbus, A.V.; Liserre, M.; Blaabjerg, F.: Double synchronous reference frame for power converter control. In: Proceedings of \(36{{\rm th}}\) IEEE PESC, pp. 1415–1421 (Jan. 2005)Google Scholar
  22. 22.
    Millnitz dos Santos, Raphael J.; da Cunha, Jean Carlo; Millnitz dos Santos, Raphael J.; da Cunha, Jean Carlo: A simplified control technique for a dual unified power quality conditioner. IEEE Trans. Indus. Electron. 61(11), 5851–5860 (2014)CrossRefGoogle Scholar
  23. 23.
    Bhatnagar, P.; Nema, R.K.: Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications. IEEE Trans. Renew. Sustain. Energy 23, 224–241 (2013)CrossRefGoogle Scholar
  24. 24.
    Singh, B.; Arya, S.R.: Implementation of single-phase enhanced phase-locked loop-based control algorithm for three phase DSTATCOMIEEE. Trans. Power Deliv. 28(3), 1516–1524 (2013)CrossRefGoogle Scholar
  25. 25.
    Rodríguez, P.; Teodorescu, R.; Candela, I.; Timbus, A.V.; Liserre, M.; Blaabjerg, F.: New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions. In: Proceedings of \(37{{\rm th}}\) IEEE PESC, pp. 1–7 (June 2006)Google Scholar
  26. 26.
    Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations