Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 949–957 | Cite as

Effect of First and Second Passes on Microstructure and Wear Properties of Titanium Dioxide-Reinforced Aluminum Surface Composite via Friction Stir Processing

  • Vikram Kumar S. Jain
  • James Varghese
  • S. MuthukumaranEmail author
Research Article - Mechanical Engineering


The dispersion of particles in polymer, ceramic and metal matrix composites via conventional routes was very difficult, due to agglomeration/clustering of particles, poor compatibility of properties of particle and matrix. So, an attempt has been made to uniformly disperse the titanium dioxide particles on the surface of aluminum matrix via two-pass friction stir processing. The effect of passes on particle distribution, microstructure, microhardness and wear properties was systematically investigated. Microstructural studies revealed a fine equiaxed grain structure in the stir zone due to the dynamic recrystallization. The first-pass surface composite sample results in agglomeration of particles toward the advancing side due to insufficient materials flow and strain. The second pass was carried out by changing advancing and retreating side of composite plate processed by the first pass. The results showed that marginal change in grain size was observed with homogeneous microstructure when compared to first-pass surface composite. Microhardness was carried out across the cross sections of the surface composites to obtain hardness profile. The tribological performance was assessed using a pin-on-disk tribometer. The result reveals that surface composites processed by the second pass show better hardness and wear resistance when compared to as-received aluminum. The wear mechanism shows a transition from adhesive wear in surface composites to the combination of abrasive and delamination wear in as-received aluminum.


Friction stir processing Aluminum Titanium dioxide Microhardness Wear rate Surface composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Templesmith, P.; Dawes, C.J.: Improvements to friction welding. GB Patent Application 9125978.8, 1991Google Scholar
  2. 2.
    Mishra, R.S.; Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R 50, 1–78 (2005)CrossRefGoogle Scholar
  3. 3.
    Li, J.Q.; Liu, H.J.: Effects of welding speed on microstructures and mechanical properties of AA2219-T6 welded by the reverse dual-rotation friction stir welding. Int. J. Adv. Manuf. Technol. 68, 2071–2083 (2013)CrossRefGoogle Scholar
  4. 4.
    Shen, J.J.; Liu, H.J.; Cui, F.: Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater. Des. 31, 3937–3942 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhou, L.; Liu, H.J.; Liu, Q.W.: Effect of rotation speed on microstructure and mechanical properties of Ti–6Al–4V friction stir welded joints. Mater. Des. 31, 2631–2636 (2010)CrossRefGoogle Scholar
  6. 6.
    Lienert, T.J.; Stellwag Jr, W.L.; Grimmett, B.B.; Warke, R.W.: Friction stir welding studies on mild steel. Weld. J. Res. Suppl. 82, 1s–9s (2003)Google Scholar
  7. 7.
    De, A.; Bhadeshia, H.K.D.H.; DebRoy, T.: Friction stir welding of mild steel: tool durability and steel microstructure. Mater. Sci. Technol. 30, 1050–1056 (2014)CrossRefGoogle Scholar
  8. 8.
    Watanabe, T.; Takayama, H.; Yanagisawa, A.: Joining of aluminum alloy to steel by friction stir welding. J. Mater. Process. Technol. 178, 342–349 (2006)CrossRefGoogle Scholar
  9. 9.
    Ma, Z.Y.; Mishra, R.S.; Mahoney, M.W.; Grimes, R.: High strain rate superplasticity in friction stir processed Al–Mg–Zr alloy. Mater. Sci. Eng. A 351, 148–153 (2003)CrossRefGoogle Scholar
  10. 10.
    Bauri, R.; Yadav, D.; Suhas, G.: Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in-situ composite. Mater. Sci. Eng. A 528, 4732–4739 (2011)CrossRefGoogle Scholar
  11. 11.
    Shahi, A.; Sohi, M.H.; Ahmadkhaniha, D.; Ghambari, M.: In situ formation of Al\(_{3}\)Ni composites on commercially pure aluminum by friction stir processing. Int. J. Adv. Manuf. Technol. 75, 1331–1337 (2014)CrossRefGoogle Scholar
  12. 12.
    D.H, Choi; Y Il, Kim; D.U,; S.B, Jung: Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Trans. Nonferrous Met. Soc. China 22, s614–s618 (2012)CrossRefGoogle Scholar
  13. 13.
    Adel Mehraban, F.; Karimzadeh, F.; Abbasi, M.H.: Development of surface nanocomposite based on Al–Ni–O ternary system on Al6061 alloy by friction-stir processing and evaluation of its properties. JOM 67, 998–1006 (2015)CrossRefGoogle Scholar
  14. 14.
    Alidokht, S.A.; Abdollah-Zadeh, A.; Soleymani, S.; Assadi, H.: Microstructure and tribological performance of an aluminum alloy based hybrid composite produced by friction stir processing. Mater. Des. 32, 2727–2733 (2011)CrossRefGoogle Scholar
  15. 15.
    Yuvaraj, N.; Aravindan, S.: Vipin.: Wear characteristics of Al5083 surface hybrid nano-composites by friction stir processing. Trans. Indian Inst. Met. 70, 1–19 (2016)Google Scholar
  16. 16.
    Khorrami, M.S.; Kazeminezhad, M.; Miyashita, Y.; Kokabi, A.H.: Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing. Int. J. Miner. Metall. Mater. 24, 297–308 (2017)CrossRefGoogle Scholar
  17. 17.
    Ding, Z.; Zhang, C.; Xie, L.; Zhang, L.-C.; Wang, L.; Lu, W.: Effects of friction stir processing on the phase transformation and microstructure of TiO\(_{2}\)-compounded Ti–6Al–4V Alloy. Metall. Mater. Trans. A 47, 5675–5679 (2016)CrossRefGoogle Scholar
  18. 18.
    Ramesh, C.S.; Noor Ahmed, R.; Mujeebu, M.A.; Abdullah, M.Z.: Fabrication and study on tribological characteristics of cast copper-TiO\(_{2}\)-boric acid hybrid composites. Mater. Des. 30, 1632–1637 (2009)CrossRefGoogle Scholar
  19. 19.
    Jain, V.K.S.; Muhammed, P.M.; Muthukumaran, S.; Babu, S.P.K.: Microstructure, mechanical and sliding wear behavior of AA5083–B4C/SiC/TiC surface composites fabricated using friction stir processing. Trans. Indian Inst. Met. 71, 1519–1529 (2018)CrossRefGoogle Scholar
  20. 20.
    Prado, R.; Murr, L.; Soto, K.; McClure, J.: Self-optimization in tool wear for friction-stir welding of Al 6061+ 20% Al\(_{2}\)O\(_{3}\) MMC. Mater. Sci. Eng. A 349, 156–165 (2003)CrossRefGoogle Scholar
  21. 21.
    Arora, H.S.; Singh, H.; Dhindaw, B.K.: Composite fabrication using friction stir processing—a review. Int. J. Adv. Manuf. Technol. 61, 1043–1055 (2012)CrossRefGoogle Scholar
  22. 22.
    Madhusudhan Reddy, G.; Sambasiva Rao, A.; Srinivasa Rao, K.: Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy. Trans. Indian Inst. Met. 66, 13–24 (2013)CrossRefGoogle Scholar
  23. 23.
    Sharifitabar, M.; Sarani, A.; Khorshahian, S.; Shafiee Afarani, M.: Fabrication of 5052Al/Al\(_{2}\)O\(_{3}\) nanoceramic particle reinforced composite via friction stir processing route. Mater. Des. 32, 4164–4172 (2011)CrossRefGoogle Scholar
  24. 24.
    Khayyamin, D.; Mostafapour, A.; Keshmiri, R.: The effect of process parameters on microstructural characteristics of AZ91/SiO\(_{2}\) composite fabricated by FSP. Mater. Sci. Eng. A 559, 217–221 (2013)CrossRefGoogle Scholar
  25. 25.
    Khodabakhshi, F.; Simchi, A.; Kokabi, A.H.; Gerlich, A.P.; Nosko, M.: Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al–Mg–TiO\(_{2}\) nanocomposites. Mater. Des. 63, 30–41 (2014)CrossRefGoogle Scholar
  26. 26.
    Sharma, V.; Prakash, U.; Kumar, B.V.M.: Surface composites by friction stir processing: a review. J. Mater. Process. Technol. 224, 117–134 (2015)CrossRefGoogle Scholar
  27. 27.
    Yadav, D.; Bauri, R.: Processing, microstructure and mechanical properties of nickel particles embedded aluminum matrix composite. Mater. Sci. Eng. A 528, 1326–1333 (2011)CrossRefGoogle Scholar
  28. 28.
    Ramesh, C.S.; Khan, A.R.A.; Ravikumar, N.; Savanprabhu, P.: Prediction of wear coefficient of Al6061–TiO\(_{2}\) composites. Wear 259, 602–608 (2005)CrossRefGoogle Scholar
  29. 29.
    Jerome, S.; Ravisankar, B.; Kumar Mahato, P.; Natarajan, S.: Synthesis and evaluation of mechanical and high-temperature tribological properties of in-situ AlTiC composites. Tribol. Int. 43, 2029–2036 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations