Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2079–2089 | Cite as

Model Predictive Control Approach for Bridge-Type Fault Current Limiter in VSC-HVDC System

  • M. Shafiul Alam
  • M. A. AbidoEmail author
  • Z. M. Al-Hamouz
Research Article - Electrical Engineering


Voltage source converter–high-voltage DC (VSC-HVDC) system has number of advantages over traditional line commutated converter HVDC. However, VSC-HVDC system is exposed to high current due to faults having great negative effect on converters. In order to limit fault current to relatively low level, this paper proposes model predictive control (MPC)-based bridge-type fault current limiter (BFCL) for VSC-HVDC system. Fault current limiters are placed with the AC grid sides of VSC-HVDC system. Finite control set MPC is developed for the control of VSC-HVDC system along with BFCL. BFCL controller has been developed to insert resistance and reactance during disturbances. Balanced and unbalanced disturbances are applied to evaluate the effectiveness of proposed BFCL controller so as to limit the fault current and augment transient stability. Real-time digital simulator has been used to conduct simulation works. The performance of the proposed MPC-BFCL is compared with that of series dynamic braking resistor (SDBR). Comparative simulation results show that the proposed MPC-BFCL is superior over SDBR in improving dynamic stability of VSC-HVDC system.


Voltage source converter Bridge-type fault current limiter Series dynamic braking resistor Fault current Model predictive control 



Single line to ground


Double line to ground


Three lines to ground


Bridge-type fault current limiter


Fault current limiter


Fault ride through


High-voltage DC


Insulated gate bipolar transistor


Line commutated converter


Model predictive control


Point of common coupling


Proportional integral


Phase-locked loop


Real-time digital simulator


Series dynamic braking resistor


Superconducting fault current limiter


Voltage source converter


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gole, A.: Apparent Increase in Short Circuit Ratio (AISCR) as a measure of the impact of VSC converters on LCC converters in Multi-Infeed HVDC systems with VSC and LCC infeeds. In: 10th IET International Conference on AC and DC Power Transmission. (ACDC 2012), pp. 22–22. Institution of Engineering and Technology (2012).
  2. 2.
    Lee, J.-G.; Khan, U.A.; Lim, S.-W.; Shin, W.; Seo, I.-J.; Lee, B.-W.: Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems. Phys. C Supercond. Its Appl. 518, 149–153 (2015). CrossRefGoogle Scholar
  3. 3.
    Elserougi, A.; Massoud, A.M.; Abdel-Khalik, A.S.; Ahmed, S.: Boost inverter-based HVDC transmission system with inherent blocking capability of AC side contribution during DC side faults. Electr. Power Syst. Res. 116, 12–23 (2014). CrossRefGoogle Scholar
  4. 4.
    ChunYi, G.: Research on the control method for voltage-current source hybrid-HVDC system. Sci. China 56, 2771–2777 (2013). CrossRefGoogle Scholar
  5. 5.
    Van Hertem, D.; Ghandhari, M.: Multi-terminal VSC HVDC for the European supergrid: obstacles. Renew. Sustain. Energy Rev. 14, 3156–3163 (2010). CrossRefGoogle Scholar
  6. 6.
    Erlich, I.; Feltes, C.; Shewarega, F.: Enhanced voltage drop control by VSC-HVDC systems for improving wind farm fault ridethrough capability. IEEE Trans. Power Deliv. 29, 378–385 (2014). CrossRefGoogle Scholar
  7. 7.
    Feltes, C.; Wrede, H.; Koch, F.W.; Erlich, I.: Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission. IEEE Trans. Power Syst. 24, 1537–1546 (2009). CrossRefGoogle Scholar
  8. 8.
    Bernal-Perez, S.; Ano-Villalba, S.; Blasco-Gimenez, R.; Rodriguez-D’Derlee, J.: Efficiency and fault ride-through performance of a diode-rectifier- and VSC-inverter-based HVDC link for offshore wind farms. IEEE Trans. Ind. Electron. 60, 2401–2409 (2013). CrossRefGoogle Scholar
  9. 9.
    Chaudhary, S.K.; Teodorescu, R.; Rodriguez, P.; Kjaer, P.C.; Gole, A.M.: Negative sequence current control in wind power plants with VSC-HVDC connection. IEEE Trans. Sustain. Energy 3, 535–544 (2012). CrossRefGoogle Scholar
  10. 10.
    Ito, D.; Yoneda, E.S.; Tsurunaga, K.; Tada, T.; Hara, T.; Ohkuma, T.; et al.: 6.6 kV/1.5 kA-class superconducting fault current limiter development. IEEE Trans. Magn. 28, 438–441 (1992). CrossRefGoogle Scholar
  11. 11.
    Willen, D.W.A.; Cave, J.R.: Short circuit test performance of inductive high T/sub c/ superconducting fault current limiters. IEEE Trans. Appl. Supercond. 5, 1047–1050 (1995). CrossRefGoogle Scholar
  12. 12.
    Lim, S.-H.; Choi, H.-S.; Chung, D.-C.; Jeong, Y.-H.; Han, Y.-H.; Sung, T.-H.; et al.: Fault current limiting characteristics of resistive type SFCL using a transformer. IEEE Trans. Appl. Supercond. 15, 2055–2058 (2005). CrossRefGoogle Scholar
  13. 13.
    Sung, B.C.; Park, D.K.; Park, J.-W.; Ko, T.K.: Study on a series resistive SFCL to improve power system transient stability: modeling, simulation, and experimental verification. IEEE Trans. Ind. Electron. 56, 2412–2419 (2009). CrossRefGoogle Scholar
  14. 14.
    de Sousa, W.T.B.; Assis, T.M.L.; Polasek, A.; Monteiro, A.M.; de Andrade, R.: Simulation of a superconducting fault current limiter: a case study in the brazilian power system with possible recovery under load. IEEE Trans. Appl. Supercond. 26, 1–8 (2016). Google Scholar
  15. 15.
    Jo, H.C.; Joo, S.K.: Superconducting fault current limiter placement for power system protection using the minimax regret criterion. IEEE Trans. Appl. Supercon. (2015). Google Scholar
  16. 16.
    Blair, S.M.; Elders, I.M.; Booth, C.D.; Burt, G.M.; McCarthy, J.; Singh, N.K.: Superconducting fault current limiter application in a power-dense marine electrical system. IET Electr. Syst. Transp. 1, 93 (2011). CrossRefGoogle Scholar
  17. 17.
    Yew, P.J.; Selamat, N.S.; Wai, S.K.; Ismail, A.B.; Hamid, N.A.: Modeling of resistive type superconducting fault current limiter in power system. J. Solid State Sci. Technol. Lett. 12, 171–179 (2005)Google Scholar
  18. 18.
    Imparato, S.; Morandi, A.; Martini, L.; Bocchi, M.; Grasso, G.; Fabbri, M.; et al.: Experimental evaluation of AC losses of a DC restive SFCL prototype. IEEE Trans. Appl. Supercond. 20, 1199–1202 (2010). CrossRefGoogle Scholar
  19. 19.
    Ali, M.H.; Dougal, R.A.: A closed-loop control based braking resistor for stabilization of wind generator system. Conf. Proc. IEEE Southeastcon (2010). Google Scholar
  20. 20.
    Saluja, R.; Ghosh, S.; Ali, M.H.: Transient stability enhancement of multi-machine power system by novel braking resistor models. Conf. Proc. IEEE Southeastcon 1, 3–8 (2013). Google Scholar
  21. 21.
    Causebrook, A.; Atkinson, D.J.; Jack, A.G.: Fault ride-through of large wind farms using series dynamic braking resistors. IEEE Trans. Power Syst. 22, 966–975 (2007). CrossRefGoogle Scholar
  22. 22.
    Alam, M.S.; Abido, M.A.Y.: Fault ride through capability enhancement of a large-scale PMSG wind system with bridge type fault current limiters. Adv. Electr. Comput. Eng. 18, 43–50 (2018). CrossRefGoogle Scholar
  23. 23.
    Sadi, M.A.H.; Ali, M.H.: Transient stability enhancement by bridge type fault current limiter considering coordination with optimal reclosing of circuit breakers. Electr. Power Syst. Res. 124, 160–172 (2015). CrossRefGoogle Scholar
  24. 24.
    Rashid, G.; Ali, M.H.: Nonlinear control-based modified BFCL for LVRT capacity enhancement of DFIG based wind farm. IEEE Trans. Energy Convers. (2017). Google Scholar
  25. 25.
    Alam, M.S.; Abido, M.A.: Fault ride-through capability enhancement of voltage source converter-high voltage direct current systems with bridge type fault current limiters. Energies 10, 1898 (2017). CrossRefGoogle Scholar
  26. 26.
    Hossain, E.: A non-linear controller based new bridge type fault current limiter for transient stability enhancement of DFIG based Wind Farm. Electr. Power Syst. Res. 152, 466–484 (2017)CrossRefGoogle Scholar
  27. 27.
    Ernst, D.; Glavic, M.; Capitanescu, F.; Wehenkel, L.: Reinforcement learning versus model predictive control: a comparison on a power system problem. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39, 517–529 (2009). CrossRefGoogle Scholar
  28. 28.
    Zong, Y.; Kullmann, D.; Thavlov, A.; Gehrke, O.; Bindner, H.W.: Application of model predictive control for active load management in a distributed power system with high wind penetration. IEEE Trans. Smart Grid 3, 1055–1062 (2012). CrossRefGoogle Scholar
  29. 29.
    Lin, J.; Zong, Y.; You, S.; Song, Y.; Jiang, H.: Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system. IET Gener. Transm. Distrib. 10, 964–971 (2016). CrossRefGoogle Scholar
  30. 30.
    Darabian, M.; Jalilvand, A.; Azari, M.: Power system stability enhancement in the presence of renewable energy resources and HVDC lines based on predictive control strategy. Int. J. Electr. Power Energy Syst. 80, 363–373 (2016). CrossRefGoogle Scholar
  31. 31.
    Mayne, D.Q.: Model predictive control: Recent developments and future promise. Automatica 50, 2967–2986 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Clarke, D.W.; Mohtadi, C.; Tuffs, P.S.: Generalized predictive control—part I. The basic algorithm. Automatica 23, 137–148 (1987). CrossRefzbMATHGoogle Scholar
  33. 33.
    Clarke, D.W.; Mohtadi, C.; Tuffs, P.S.: Generalized predictive control—part II. Extensions and interpretations. Automatica 23, 149–160 (1987)CrossRefzbMATHGoogle Scholar
  34. 34.
    Perantzakis, G.S.; Xepapas, F.H.; Manias, S.N.: Efficient predictive current control technique for multilevel voltage source inverters. Eur. Conf. Power Electron. Appl. 2005, 1–10 (2005). Google Scholar
  35. 35.
    Rodriguez, J.; Pontt, J.; Silva, C.A.; Correa, P.; Lezana, P.; Cortes, P.; et al.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54, 495–503 (2007). CrossRefGoogle Scholar
  36. 36.
    Jafari, M.; Naderi, S.B.; Hagh, M.T.; Abapour, M.; Hosseini, S.H.: Voltage sag compensation of point of common coupling (PCC) using fault current limiter. IEEE Trans. Power Deliv. 26, 2638–2646 (2011). CrossRefGoogle Scholar
  37. 37.
    Alam, M.S.; Hussein, A.; Abido, M.A.; Al-Hamouz, Z.M.: VSC-HVDC system stability augmentation with bridge type fault current limiter. In: 6th International Conference on Clean Electrical Power, Santa Margherita Ligure, Italy, pp. 531–535 (2017).
  38. 38.
    Rashid, G.; Ali, M.H.: Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter. IEEE Trans. Energy Convers. 30, 939–947 (2015)CrossRefGoogle Scholar
  39. 39.
    Liu, X.; Wang, P.; Loh, P.C.: A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid 2, 278–286 (2011). CrossRefGoogle Scholar
  40. 40.
    Hossain, M.A.; Pota, H.R.; Issa, W.; Hossain, M.J.: Overview of AC microgrid controls with inverter-interfaced generations. Energies 10, 1–27 (2017). Google Scholar
  41. 41.
    Preitl, S.; Precup, R.-E.: An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica 35, 1731–1736 (1999). CrossRefzbMATHGoogle Scholar
  42. 42.
    Baek, S.-M.; Park, J.-W.: Nonlinear parameter optimization of FACTS controller via real-time digital simulator. IEEE Ind. Appl. Soc. Annu. Meet. 49, 1–8 (2012). Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • M. Shafiul Alam
    • 1
  • M. A. Abido
    • 1
    Email author
  • Z. M. Al-Hamouz
    • 1
  1. 1.Department of Electrical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations