Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2067–2078 | Cite as

Fault Ride-Through and Power Smoothing Control of PMSG-Based Wind Generation Using Supercapacitor Energy Storage System

  • Muhammed Y. WorkuEmail author
  • M. A. Abido
Research Article - Electrical Engineering


This paper proposes an efficient power smoothing and fault ride-through control strategy for variable-speed grid-connected permanent magnet synchronous generator (PMSG)-based wind turbine generator (WTG) with supercapacitor energy storage system (SCESS). As WTG installations are increasing, these systems need to have a fault ride-through capability to stay alive during grid faults. As the wind speed is varying, power smoothing is needed as well. The controller proposed has twofold advantage for WTG equipped with SCESS. That is the SCESS is exploited to minimize the short-term fluctuation to have a smooth power profile during normal operation. In addition during grid side fault, the proposed controller stores the generated power from the WTG into the SCESS to ride-through the fault. Two back-to-back-connected three-level neutral-point-clamped (NPC) converters are used for the power conversion. The system model and the control strategy have been developed for the NPCs, the buck-boost converter and the variable-speed WTG system. The real time digital simulator (RTDS)-based results conducted on 2 MW/4 kV PMSG verify the effectiveness and superiority of the proposed controller.


Wind turbine generator system Fault ride-through Power smoothing Supercapacitor energy storage RTDS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, T.F.; Lai, L.L.: Permanent-magnet machines for distributed generation: a review. In: IEEE Power Engineering Annual Meeting, pp. 1–6 (2007)Google Scholar
  2. 2.
    Polinder, H.; de Haan, S.W.H.; Dubois, M.R.; Slootweg, J.: Basic operation principles and electrical conversion systems of wind turbines. In: Nordic Workshop on Power and Industrial Electronics, pp. 14–16. Trondheim, Norway (2004)Google Scholar
  3. 3.
    Michalke, G.; Hansen, A.D.; Hartkopf, T.: Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator. In: European Wind Energy Conference and Exhibition, Milan (IT), pp. 7–10 (2007)Google Scholar
  4. 4.
    Li, H.; Chen, Z.; Polinder, H.: Optimization of multibrid permanent-magnet wind generator systems. IEEE Trans. Energy Convers. 24(1), 82–92 (2009)CrossRefGoogle Scholar
  5. 5.
    Bang, D.J.; Polinder, H.; Shrestha, G.; Ferreira, J.A.: Review of generator systems for direct-drive wind turbines. In: European Wind Energy Conference and Exhibition, Belgium, 31 March–3 April (2008)Google Scholar
  6. 6.
    Muller, S.; Deicke, M.; De Doncker, R.W.: Doubly fed induction generator systems for wind turbines. IEEE Ind. Appl. Mag. 8(3), 26–33 (2002)CrossRefGoogle Scholar
  7. 7.
    Rahim, A.H.M.A.; Khan, M.H.: A swarm-based adaptive neural network SMES control for a permanent magnet wind generator. Arab. J. Sci. Eng. 39, 7957–7965 (2014)CrossRefGoogle Scholar
  8. 8.
    Rahmann, C.; Haubrich, H.J.; Moser, A.; Palma-Behnke, R.; Vargas, L.; Salles, M.B.C.: Justified fault-ride-through requirements for wind turbines. IEEE Trans. Power Syst. 26, 1555–1563 (2011)CrossRefGoogle Scholar
  9. 9.
    Singh, B.; Singh, S.N.: Wind power interconnection into the power system: a review of grid code requirements. Electr. J. 22 54–63(2009).Google Scholar
  10. 10.
    Muhammed, Y.W.; Abido, M.A.; Iravani, R.: PMSG based wind system for real-time maximum power generation and low voltage ride through. J. Renew. Sustain. Energy 9, 013304 (2017)CrossRefGoogle Scholar
  11. 11.
    Muyeen, S.M.; Takahashi, R.; Murata, T.; Tamura, J.: A variable speed wind turbine control strategy to meet wind farm grid code requirements. IEEE Trans. Power Syst. 25(1), 331–340 (2010)CrossRefGoogle Scholar
  12. 12.
    Conroy, J.F.; Watson, R.: Low-voltage ride-through of a full converter wind turbine with permanent magnet generator. IET Renew. Power Gener. 1(3), 182–189 (2007)CrossRefGoogle Scholar
  13. 13.
    Mullane, A.: Wind-turbine fault ride-through enhancement. IEEE Trans. Power Syst. 20(4), 1929–1937 (2005)CrossRefGoogle Scholar
  14. 14.
    Muyeen, S.M.; Al-Durra, A.; Tamura, J.: Variable speed wind turbine generator system with current controlled voltage source inverter. Energy Convers. Manag. 52, 2688–2694 (2011)CrossRefGoogle Scholar
  15. 15.
    Enamul Haque, Md.; Negnevitsky, M.; Muttaqi, K.M.: A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator. IEEE Trans. Ind. Appl. 46(1), 331–339 (2010)Google Scholar
  16. 16.
    Mozayan, S.M.; Saad, M.; Vahedi, H.; Fortin-Blanchette, H.; Soltani, M.: Sliding mode control of PMSG wind turbine based on enhanced exponential reaching law. IEEE Trans. Ind. Electron. 63(10), 6148–6159 (2016)CrossRefGoogle Scholar
  17. 17.
    Cardenas, R.; Pena, R.; Asher, G.; Clare, J.: Power smoothing in wind generation systems using a sensorless vector controlled induction machine driving a flywheel. IEEE Trans. Energy Convers. 19(1), 206–216 (2004)CrossRefGoogle Scholar
  18. 18.
    Nomura, S.; Ohata, Y.; Hagita, T.; Tsutsui, H.; Tsuji-Iio, S.; Shimada, R.: Wind farms linked by SMES systems. IEEE Trans. Appl. Supercond. 15(2), 1951–1954 (2005)CrossRefGoogle Scholar
  19. 19.
    Ali, M.H.; Murata, T.; Tamura, J.: Minimization of fluctuations of line power and terminal voltage of wind generator by fuzzy logic-controlled SMES. Int. Rev. Electr. Eng. 1(4), 559–566 (2006)Google Scholar
  20. 20.
    Karaipoom, T.; Ngamroo, I.: Optimal superconducting coil integrated into DFIG wind turbine for fault ride through capability enhancement and output power fluctuation suppression. IEEE Trans. Sustain. Energy 6(1), 28–42 (2015)CrossRefGoogle Scholar
  21. 21.
    Schneuwly, A.: Charge ahead ultracapacitor technology and applications. IET Power Eng. J. 19, 34–37 (2005)CrossRefGoogle Scholar
  22. 22.
    Yibre, M.; Abido, M.A.: Supercapacitors for wind power application. In: 2nd International Conference on Renewable Energy Research and Applications, 20–23 Oct, Madrid, Spain (2013)Google Scholar
  23. 23.
    Cheng, Y.: Assessments of energy capacity and energy losses of supercapacitors in fast charging–discharging cycles. IEEE Trans. Energy Convers. 25(1), 253–261 (2010)CrossRefGoogle Scholar
  24. 24.
    Muhammed Y.W.: Power smoothing control of PMSG based wind generation using supercapacitor energy storage system. Int. J. Emerg. Electr. Power Syst. (2017)
  25. 25.
    Gkavanoudis, S.I.; Demoulias, C.S.: A combined fault ride-through and power smoothing control method for full-converter wind turbines employing supercapacitor energy storage system. Electr. Power Syst. Res. 106, 62–72 (2014)CrossRefGoogle Scholar
  26. 26.
    Rahim, A.H.M.A.; Nowicki, E.P.: Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system. Energy Convers. Manag. 59, 96–102 (2012)CrossRefGoogle Scholar
  27. 27.
    Huang, P.-H.; El Moursi, M.S.; Hasen, S.A.: Novel fault ride through scheme and control strategy for doubly fed induction generator based wind turbine. IEEE Trans. Energy Convers. 30(2), 635–645 (2015)CrossRefGoogle Scholar
  28. 28.
    Yin, M.; Li, G.; Zhou, M.; Zhao, C.: Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In: IEEE Power Engineering Society General Meeting, pp. 1–6 (2007)Google Scholar
  29. 29.
    Strachan, N.; Jovcic, D.: Smoothing wind power fluctuations in an integrated wind energy conversion and storage system (WECSS). In: Proceedings IEEE Power Engineering Society General Meeting, Pittsburgh, PA (2008)Google Scholar
  30. 30.
    Srithorn, P.; Sumner, M.; Yao, L.; Parashar, R.: Power system stabilisation using STATCOM with supercapacitors. In: ISA’08 IEEE Industry Applications Society Annual Meeting (2008)Google Scholar
  31. 31.
    Hassan, M.A.; Abido, M.A.: Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimization. IEEE Trans. Power Electron. 26(3), 755–769 (2011)CrossRefGoogle Scholar
  32. 32.
    Tsili, M.; Papathanassiou, S.: A review of grid code technical requirements for wind farms. IET Renew. Power Gener. 3, 308–332 (2009)CrossRefGoogle Scholar
  33. 33.
    E.ON: Grid code: high and extra high voltage. E.ON Netz GmbH Technical Report Edition (2006)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Center for Engineering ResearchResearch Institute King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Electrical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations