Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 809–819 | Cite as

Improvement of Energy Extraction Efficiency for Flapping Airfoils by Using Oscillating Gurney Flaps

  • Mohamed Taher BouzaherEmail author
  • Nouredine Drias
  • Belhi Guerira
Research Article - Mechanical Engineering
  • 45 Downloads

Abstract

The present paper proposes an oscillating Gurney flap to enhance the power extraction efficiency of a flapping airfoil system. Two-dimensional Navier–Stokes resolutions by the flow solver fluent are performed. To alter the flap position during the flapping cycle, a dynamic mesh technique is used. The flow regime is considered fully laminar, with a free stream Reynolds number of Re = 1100. Results show that, the synchronization of the Gurney flap motion with the central flapping airfoil motion generates a virtual camber which corrects the pressure distribution and ultimately enhances the lift force during both, the up-stroke and down-stroke stages. The lift enhancement is interpreted to an improvement in the output power as compared to a clean flapping extractor.

Keywords

Gurney flap Power extraction efficiency Flapping airfoil system Lift force 

List of symbols

c

Chord length

CD

Airfoil drag coefficient, \(\frac{D}{1/2\rho U_\infty ^2 C}\)

CL

Airfoil lift coefficient, \(\frac{L}{1/2\rho U_\infty ^2 C}\)

\(C_M \)

Airfoil pitching moment coefficient, \(\frac{M}{1/2\rho U_\infty ^2 C^{2}}\)

L(t)

Lift force

M(t)

Pitching moment on the airfoil

h(t)

Plunge amplitude of the airfoil pivot point

\(\theta (t)\)

Airfoil instantaneous angle

\(\theta _0\)

Pitching amplitude

\(\theta _1 \)

Flap pitching amplitude relative to trailing edge tip

\(\dot{\theta }\)

Angular velocity of the airfoil

\(\phi _{{\text {flap}}} \)

Phase angle between airfoil pitching and flap pitching

\(f^{*}\)

Non-dimensional frequency

f

Flapping frequency

\(\phi \)

Phase angle between the pitching and plunging motions

\(P_\theta (t)\)

Power extracted by pitching motion

\(P_h (t)\)

Power extracted by plunging motion

Re

Reynolds number based on chord, \(\frac{\rho U_\infty c}{\mu }\)

\(\bar{C}_{{p_{{\text {total}}} }}\)

Aerodynamic power coefficient, \(\frac{P}{1/2\rho U_\infty ^3 C}\)

\(\bar{C}_{{p_{{\text {flag}}}}}\)

Flap aerodynamic power coefficient, \(\frac{P_{{\text {flap}}} }{1/2\rho U_\infty ^3 C}\)

\(\bar{C}_{{P_{{h}}}}\)

Power coefficient due to plunging, \(\frac{P_h }{1/2\rho U_\infty ^3 C}\)

\(\bar{C}_{{p_{{\theta }} }}\)

Power coefficient due to pitching, \(\frac{P_\theta }{1/2\rho U_\infty ^3 C}\)

\(\eta _{\mathrm{{total}}}\)

Total energy extraction efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atmaca, M.; Onat, A.: Numerical simulation of different turbulent free jets. In: WEENTECH Proceedings in Energy, vol. 5, pp. 44–52, 25 Jan 2018. ISSN: 2059-2353, ISBN: 978-0-9932795-3-9Google Scholar
  2. 2.
    Atmaca, M.; Girgin, I.; Ezgi, C.: CFD modelling of a diesel evaporator used in cell systems. Int. J. Hydrog. Energy 41(14), 6004–6012 (2016)CrossRefGoogle Scholar
  3. 3.
    Kinsey, T.; Dumas, G.: Parametric study of an oscillating airfoil in a power-extraction regime. AIAA J. 46(6), 1318–1330 (2008)CrossRefGoogle Scholar
  4. 4.
    Ashraf, M.A.; Young, J.; Lai, J.C.S.; Platzer, M.F.: Numerical analysis of an oscillating-wing wind and hydropower generator. AIAA J. 49(7), 1374–1386 (2011)CrossRefGoogle Scholar
  5. 5.
    Wu, J.; Chen, Y.; Zhao, N.; Wang, T.: Influence of stroke deviation on the power extraction performance of a fully-active flapping foil. Renew. Energy 94, 440–451 (2016)CrossRefGoogle Scholar
  6. 6.
    Wang, Y.; Sun, X.; Huang, D.; Zheng, Z.: Numerical investigation on energy extraction of flapping hydrofoils with different series foil shapes. Energy 112, 1153–1168 (2016)CrossRefGoogle Scholar
  7. 7.
    Teng, L.; Deng, J.; Pan, D.; Shao, X.: Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil. Renew. Energy 85, 810–818 (2016)CrossRefGoogle Scholar
  8. 8.
    Hoke, C.M.; Young, J.; Lai, J.C.S.: Effects of time-varying camber deformation on flapping foil propulsion and power extraction. J. Fluids Struct. 56, 152–176 (2015)CrossRefGoogle Scholar
  9. 9.
    Liu, W.; Xiao, Q.; Cheng, F.: A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspir. Biomim. (2013).  https://doi.org/10.1088/1748-3182/8/3/036011 Google Scholar
  10. 10.
    Le, T.Q.; Ko, J.H.: Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations. Renew. Energy 80, 275–285 (2015)CrossRefGoogle Scholar
  11. 11.
    Wu, J.; Wu, J.; Tian, F.-B.; Zhao, N.; Li, Y.-D.: How a flexible tail improves the power extraction efficiency of a semi-activated flapping foil system: a numerical study. J. Fluids Struct. 54, 886–899 (2015)CrossRefGoogle Scholar
  12. 12.
    Tian, F.-B.; Young, J.; Lai, J.C.S.: Improving power-extraction efficiency of a flapping plate: from passive deformation to active control. J. Fluids Struct. 51, 384–392 (2014).  https://doi.org/10.1016/j.jfluidstructs.2014.07.013 CrossRefGoogle Scholar
  13. 13.
    Liebeck, R.H.: Design of subsonic airfoils for high lift. J. Aircr. 15(9), 547–61 (1978)CrossRefGoogle Scholar
  14. 14.
    Jang, C.S.; Ross, J.C.; Cummings, R.M.: Numerical investigation of an airfoil with a Gurney flap. Aircr. Des. 1(2), 75 (1998)CrossRefGoogle Scholar
  15. 15.
    Myose, R.; Papadakis, M.; Heron, I.: Gurney flap experiments on airfoils, wings, and reflection plane model. J. Aircr. 35(2), 206–11 (1998)CrossRefGoogle Scholar
  16. 16.
    Li, Y.; Wang, J.; Zhang, P.: Effects of Gurney flaps on a NACA0012 airfoil. Flow Turbul. Combust. 68(1), 27–39 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, T.; Montefort, J.: Thin-airfoil theoretical interpretation for Gurney flap lift enhancement. J. Aircr. 44(2), 667–71 (2007)CrossRefGoogle Scholar
  18. 18.
    Giguere, P.; Lemay, J.; Dumas, G.: Gurney flap effects and scaling for low-speed airfoils. In: AIAA paper, pp. 95–1881 (1995)Google Scholar
  19. 19.
    Lee, T.; Gerontakos, P.: Oscillating wing loadings with trailing-edge strips. J. Aircr. 43(2), 428–36 (2006)CrossRefGoogle Scholar
  20. 20.
    Gerontakos, P.; Lee, T.: Particle image velocimetry investigation of flow over unsteady airfoil with trailing-edge strip. Exp. Fluids 44(4), 539–56 (2008)CrossRefGoogle Scholar
  21. 21.
    Xie, Y.H.; Jiang, W.; Lu, K.; Zhang, D.: Numerical investigation into energy extraction of flapping airfoil with Gurney flaps. Energy 109, 694–702 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mohamed Taher Bouzaher
    • 2
    Email author
  • Nouredine Drias
    • 1
  • Belhi Guerira
    • 1
  1. 1.Département de Génie MécaniqueUniversité de BiskraBiskraAlgeria
  2. 2.Unité de Recherche Appliquée en Energies Renouvelables, URAERCentre de Développement des Energies Renouvelables, CDERGhardaïaAlgeria

Personalised recommendations