Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6109–6117 | Cite as

Correlations Between the Sonochemical Production Rate of Hydrogen and the Maximum Temperature and Pressure Reached in Acoustic Bubbles

  • Slimane Merouani
  • Oualid Hamdaoui
Research Article - Chemical Engineering
  • 13 Downloads

Abstract

Water sonolysis generates hydrogen through acoustic cavitation. In this work, based on a model for a reactive acoustic bubble, correlations between the sonochemical production of hydrogen and the maximum temperature and pressure reached in the bubble at the violent collapse have been made. The computational analysis has been performed for more than 800 points obtained by combining various cavitation parameters, i.e., frequency, acoustic intensity, liquid temperature, and ambient bubble radius. The simulation results showed that hydrogen production rate progressed linearly with the bubble temperature and pressure rise up to plateaus, which begin at 3500 ± 200 K and 100 ± 10 atm. Analyzing the progress of \(\text {H}^{{\cdot }}\) and \(^{{\cdot }} \)OH (\(\text {H}_{2}\) precursors) as function of bubble temperature and pressure showed very similar evolutions as those obtained for \(\text {H}_{2}\) with the same optimums at 3500 ± 200 K and 100 ± 10 atm. Consequently, in addition to the quench of hydrogen formation at very high bubble temperatures through the reaction \(\text {H}_{2}+\,^{{\cdot }}{\hbox {OH}}\rightarrow \text {H}_{2}\hbox {O}+\text {H}^{{\cdot }}\), the existing optimum temperature and pressure for \(\text {H}_{2}\) production may also be due the hard consumption of their precursors (\(^{{\cdot }}\)OH and \(\text {H}^{{\cdot }})\) above 3500 K and 100 atm.

Keywords

Water sonolysis Hydrogen production Cavitation bubble Bubble temperature Bubble pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dincer, I.; Acar, C.: Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40, 11094–11111 (2015).  https://doi.org/10.1016/j.ijhydene.2014.12.035 CrossRefGoogle Scholar
  2. 2.
    Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S.: Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels 19, 1098–2106 (2005).  https://doi.org/10.1021/ef0500538 CrossRefGoogle Scholar
  3. 3.
    Dincer, I.: Green methods for hydrogen production. Int. J. Hydrog. Energy 37, 1954–1971 (2012).  https://doi.org/10.1016/j.ijhydene.2011.03.173 CrossRefGoogle Scholar
  4. 4.
    Dincer, I.; Acar, C.: Innovation in hydrogen production. Int. J. Hydrog. Energy 42, 14843–14864 (2017).  https://doi.org/10.1016/j.ijhydene.2017.04.107 CrossRefGoogle Scholar
  5. 5.
    Ezzahra Chakik, F.; Kaddami, M.; Mikou, M.: Effect of operating parameters on hydrogen production by electrolysis of water. Int. J. Hydrog. Energy (2017).  https://doi.org/10.1016/j.ijhydene.2017.07.015 CrossRefGoogle Scholar
  6. 6.
    Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K.: A review and recent developments in photocatalytic water-splitting using Ti\(\text{ O }_{2}\) for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007).  https://doi.org/10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  7. 7.
    Das, D.; Veziroglu, T.N.: Advances in biological hydrogen production processes. Int. J. Hydrog. Energy 33, 6046–6057 (2008).  https://doi.org/10.1016/j.ijhydene.2008.07.098 CrossRefGoogle Scholar
  8. 8.
    Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Computational engineering study of hydrogen production via ultrasonic cavitation in water. Int. J. Hydrog. Energy 41, 832–844 (2016).  https://doi.org/10.1016/j.ijhydene.2015.11.058 CrossRefGoogle Scholar
  9. 9.
    Gentili, P.L.; Penconi, M.; Ortica, F.; Cotana, F.; Rossi, F.; Elisei, F.: Synergistic effects in hydrogen production through water sonophotolysis catalyzed by new La\(_{2{\rm x}}\)Ga\(_{2{\rm y}}\)In\(_{2}\)(1\(-\)x\(-\)y)O\(_{3}\) solid solutions. Int. J. Hydrog. Energy 34, 9042–9049 (2009).  https://doi.org/10.1016/j.ijhydene.2009.09.027 CrossRefGoogle Scholar
  10. 10.
    Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Mechanism of the sonochemical production of hydrogen. Int. J. Hydrog. Energy 40, 4056–4064 (2015).  https://doi.org/10.1016/j.ijhydene.2015.01.150 CrossRefGoogle Scholar
  11. 11.
    Ciawi, E.; Rae, J.; Ashokkumar, M.; Grieser, F.: Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J. Phys. Chem. B 110, 13656–60 (2006).  https://doi.org/10.1021/jp061441t CrossRefGoogle Scholar
  12. 12.
    Didenko, Y.T.; McNamara, W.B.; Suslick, K.S.: Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 121, 5817–5818 (1999).  https://doi.org/10.1021/ja9844635 CrossRefGoogle Scholar
  13. 13.
    Flannigan, D.J.; Hopkins, S.D.; Camara, C.G.; Putterman, S.J.; Suslick, K.S.: Measurement of pressure and density inside a single sonoluminescing bubble. Phys. Rev. Lett. 96, 204301 (2006).  https://doi.org/10.1103/PhysRevLett.96.204301 CrossRefGoogle Scholar
  14. 14.
    Anbar, M.; Pecht, I.: On the sonochemical formation of hydrogen peroxide in water. J. Phys. Chem. 68, 352–355 (1964).  https://doi.org/10.1021/j100784a025 CrossRefGoogle Scholar
  15. 15.
    Hart, E.J.; Henglein, A.: Sonochemistry of aqueous solutions: \(\text{ H }_{2}\)-\(\text{ O }_{2}\) combustion in cavitation bubbles. J. Phys. Chem. 91, 3654–3656 (1987)CrossRefGoogle Scholar
  16. 16.
    Fischer, C.; Hart, E.; Henglein, A.: Ultrasonic irradiation of water in the presence of \(^{18,18} \text{ O }_{2}\): isotope exchange and isotopic distribution of \(\text{ H }_{2} \text{ O }_{2}\). J. Phys. Chem. 90, 1954–1956 (1986)CrossRefGoogle Scholar
  17. 17.
    Hart, E.J.; Fischer, C.-H.; Henglein, A.: Isotopic exchange in the sonolysis of aqueous solutions containing nitrogen-14 and nitrogen-15 molecules. J. Phys. Chem. 90, 5989–5991 (1986)CrossRefGoogle Scholar
  18. 18.
    Fischer, C.-H.; Hart, E.J.; Henglein, A.: H/D isotope exchange in the D\(_{2}\)-\(\text{ H }_{2}\)O system under the influence of ultrasound. J. Phys. Chem. 90, 222–224 (1986)CrossRefGoogle Scholar
  19. 19.
    Hart, E.J.; Fischer, C.; Henglein, A.: Pyrolysis of acetylene in conolytic cavitation bubbles in aqueous solution. J. Phys. Chem. 94, 284–290 (1990)CrossRefGoogle Scholar
  20. 20.
    Buettner, J.; Gutierrez, M.; Henglein, A.: Sonolysis of water-methanol mixtures. J. Phys. Chem. 95, 1528–1530 (1991).  https://doi.org/10.1021/j100157a004 CrossRefGoogle Scholar
  21. 21.
    Yasui, K.; Tuziuti, T.; Iida, Y.; Mitome, H.: Theoretical study of the ambient-pressure dependence of sonochemical reactions. J. Chem. Phys. 119, 346 (2003).  https://doi.org/10.1063/1.1576375 CrossRefGoogle Scholar
  22. 22.
    Makino, K.; Mossoba, M.M.; Riesz, P.: Chemical effects of ultrasound on aqueous solutions. Evidence for OH an H by spin trapping. J. Am. Chem. Soc. 104, 3537–3539 (1982).  https://doi.org/10.1021/ja00376a064 CrossRefGoogle Scholar
  23. 23.
    Adewuyi, Y.G.: Sonochemistry: environmental science and engineering applications. Eng. Chem. Res. 40, 4681–4715 (2001).  https://doi.org/10.1021/ie010096l CrossRefGoogle Scholar
  24. 24.
    Merouani, S.; Hamdaoui, O.; Saoudi, F.; Chiha, M.: Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and \(\text{ H }_{2} \text{ O }_{2}\) production. J. Hazard. Mater. 178, 1007–1014 (2010).  https://doi.org/10.1016/j.jhazmat.2010.02.039 CrossRefGoogle Scholar
  25. 25.
    Merouani, S.; Hamdaoui, O.: The size of active bubbles for the production of hydrogen in sonochemical reaction field. Ultrason. Sonochem. 32, 320–327 (2016).  https://doi.org/10.1016/j.ultsonch.2016.03.026 CrossRefGoogle Scholar
  26. 26.
    Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Ultrason. Sonochem. 22, 41–50 (2014).  https://doi.org/10.1016/j.ultsonch.2014.07.011 CrossRefGoogle Scholar
  27. 27.
    Merouani, S.; Ferkous, H.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: A method for predicting the number of active bubbles in sonochemical reactors. Ultrason. Sonochem. 22, 51–58 (2014).  https://doi.org/10.1016/j.ultsonch.2014.07.015 CrossRefGoogle Scholar
  28. 28.
    Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Modeling of ultrasonic cavitation as an advanced technique for water treatment. Desalin. Water Treat. 56, 1–11 (2014).  https://doi.org/10.1080/19443994.2014.950994 CrossRefGoogle Scholar
  29. 29.
    Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters. Ultrasonics 54, 227–232 (2014).  https://doi.org/10.1016/j.ultras.2013.04.014 CrossRefGoogle Scholar
  30. 30.
    Crum, L.A.: The polytropic exponent of gas contained within air bubbles pulsating in a liquid. J. Acoust. Soc. Am. 73, 116–120 (1983).  https://doi.org/10.1121/1.388844 CrossRefGoogle Scholar
  31. 31.
    Keller, J.B.; Miksis, M.: Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628–633 (1980).  https://doi.org/10.1121/1.384720 CrossRefzbMATHGoogle Scholar
  32. 32.
    Colussi, A.J.; Linda, K.; Weavers, A.; Hoffmann, M.R.; Colussi, A.J.; Weavers, L.K.; Hoffmann, M.R.: Chemical bubble dynamics and quantitative sonochemistry. J. Phys. Chem. A 102, 6927–6934 (1998).  https://doi.org/10.1021/jp980930t CrossRefGoogle Scholar
  33. 33.
    Yasui, K.: Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold. Ultrasonics 36, 575–580 (1998).  https://doi.org/10.1016/S0041-624X(97)00107-8 CrossRefGoogle Scholar
  34. 34.
    Storey, B.D.; Szeri, A.J.: A reduced model of cavitation physics for use in sonochemistry. Proc. R. Soc. Lond. A 457, 1685–1700 (2001).  https://doi.org/10.1098/rspa.2001.0784A CrossRefGoogle Scholar
  35. 35.
    Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason. Sonochem. 21, 53–59 (2014).  https://doi.org/10.1016/j.ultsonch.2013.05.008 CrossRefGoogle Scholar
  36. 36.
    Yasui, K.; Tuziuti, T.; Sivakumar, M.; Iida, Y.: Theoretical study of single-bubble sonochemistry. J. Chem. Phys. 122, 224706 (2005).  https://doi.org/10.1063/1.1925607 CrossRefGoogle Scholar
  37. 37.
    Merouani, S.; Hamdaouia, O.; Boutamine, Z.; Rezgui, Y.; Guemini, M.: Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water. Ultrason. Sonochem. 28, 382–392 (2016).  https://doi.org/10.1016/j.ultsonch.2015.08.015 CrossRefGoogle Scholar
  38. 38.
    Kerboua, K.; Hamdaoui, O.: Numerical estimation of ultrasonic production of hydrogen: effect of ideal and real gas based models. Ultrason. Sonochem. (2018).  https://doi.org/10.1016/j.ultsonch.2017.07.005 CrossRefGoogle Scholar
  39. 39.
    Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M.: Optimum bubble temperature for the production of hydroxyl radical in acoustic cavitation—frequency dependence. Acta Acust. United Acust. 101, 684–689 (2015).  https://doi.org/10.3813/AAA.918864 CrossRefGoogle Scholar
  40. 40.
    Yasui, K.; Tuziuti, T.; Iida, Y.: Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics 42, 579–84 (2004).  https://doi.org/10.1016/j.ultras.2003.12.005 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process EngineeringUniversity of Constantine 3ConstantineAlgeria
  2. 2.Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of EngineeringBadji Mokhtar – Annaba UniversityAnnabaAlgeria

Personalised recommendations