Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 731–738 | Cite as

Volumetric Efficiency Optimization of Manifold with Variable Geometry Using Acoustic Vibration for Intake Manifold with Variable Geometry in Case of LPG-Enriched Hydrogen Engine

  • Sahar HadjkacemEmail author
  • Mohamed Ali Jemni
  • Mohamed Salah Abid
Research Article - Mechanical Engineering


A proper design of the engine intake system can provide the best engine performance. The modeling of inlet system is very important for the evaluation of the engine performance. It is known that the wave dynamics of intake system influences the engine performance. In the present work, the acoustic supercharging phenomenon is applied to optimize the volumetric efficiency of an engine converted into LPG–hydrogen blend. The effect of the intake plenum length on the engine performance is investigated. In fact, an analytical resolution of acoustic waves is used to perform the optimal length for several engine speeds. This resolution is based on the impedance method. In a second step, a simulation of the pressure wave evolution in the intake pipe is carried out using the method of characteristic in order to validate the lengths analytically found. After that, a validation is achieved through experimental data. The results showed that an optimum length calculated by the analytical method gives a maximum in-cylinder velocity (0.649 m at 750 rpm and 0.696 m at 1000 rpm).


Gas engine Intake manifold Variable geometry Acoustic Supercharging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gharehghani, A.; Hosseini, R.; Mirsalim, M.; Yusaf, T.F.: A comparative study on the first and second law analysis and performance characteristics of a spark ignition engine using either natural gas or gasoline. Fuel 158, 488–493 (2015)CrossRefGoogle Scholar
  2. 2.
    Elfasakhany, A.: Experimental study of dual \(n\)-butanol and iso-butanol additives on spark-ignition engine performance and emissions. Fuel 163, 166–174 (2016)CrossRefGoogle Scholar
  3. 3.
    Shojaeefard, M.H.; Khalkhali, A.; Firouzgan, A.: Intake manifold flow assessment ona 3-cylinder natural aspirated downsized engine using CFD and GT-SUITE. Int. J. Eng. Trans. B 29, 255–263 (2016)Google Scholar
  4. 4.
    Supee, A.; Shafeez, M.S.; Mohsin, R.; Majid, Z.A.: Performance of diesel–compressed natural gas (CNG) dual fuel (DDF) engine via CNG-air venturi mixjector application. Arab. J. Sci. Eng. 39, 7335–7344 (2014)CrossRefGoogle Scholar
  5. 5.
    Nautiyal, A.; Goel, S.: Intake runner with automatic adjustable plenum volume. Imperial J. Interdiscipl. Res. (IJIR) 3, 1632–1636 (2017)Google Scholar
  6. 6.
    Harrison, M.F.; De Soto, I.; Rubio Unzueta, P.L.: A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle. J. Sound Vib. 278, 975–1011 (2004)CrossRefGoogle Scholar
  7. 7.
    Chalet, D.; Mahe, A.; Migaud, J.; Hetet, J.F.: A frequency modeling of the pressure waves in the inlet manifold of internal combustion engine. Appl. Energy 88, 2988–2994 (2011)CrossRefGoogle Scholar
  8. 8.
    Lee, J.S.; Yoon, K.S.: A numerical and experimental study on the optimal design for the intake system of the MPI spark ignition engines. KSME J. 10, 471–479 (1996)CrossRefGoogle Scholar
  9. 9.
    Rubayi, N.A.: Acoustic vibrations in intake manifold system and the supercharging of engines. Appl. Acoust. 5, 39–53 (1972)CrossRefGoogle Scholar
  10. 10.
    Winterbone, D.: Gas Dynamics in Engine Manifolds. Professional Engineering Publishing, London (1999)Google Scholar
  11. 11.
    Engelman, H.W.: Design of a tuned intake manifold. ASME Diesel and Gas Power Conference Proceedings, Houston, Texas, ASME (1974)Google Scholar
  12. 12.
    Servetto, E.; Bianco, A.; Caputo, G.; Iacono, G.L.: Resonator on a large-bore marine dual fuel engine. SAE (2017). Google Scholar
  13. 13.
    Harrison, M.F.; Stanev, P.T.: A linear acoustic model for intake wave dynamics in IC engines. J. Sound Vib. 269, 361–387 (2004)CrossRefGoogle Scholar
  14. 14.
    Yin, S.: Volumetric efficiency modeling of a four stroke IC engine. Thesis, Colorado State University (2017)Google Scholar
  15. 15.
    Chalet, D.; Mahé, A.; Hétet, J.F.; Migaud, J.: A new modeling approach of pressure waves at the inlet of internal combustion engines. J. Thermal Sci. 20, 181–188 (2011)CrossRefGoogle Scholar
  16. 16.
    D’Errico, G.; Cerri, T.; Pertusi, G.: Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models. Appl. Energy 88, 767–777 (2011)CrossRefGoogle Scholar
  17. 17.
    D’Erricoa, G.; Onoratia, A.; Ellgasb, S.: 1D thermo-fluid dynamic modelling of an S.I. single-cylinder H2 engine with cryogenic port injection. Int. J. Hydrog. Energy 33, 5275–5858 (2008)CrossRefGoogle Scholar
  18. 18.
    Borel, M.: Les Phénomènes d’Ondes dans les Moteurs. Editions Technip, Paris (2000)Google Scholar
  19. 19.
    Benson, R.S.; Garg, R.D.; Woollatt, D.: A numerical solution of unsteady flow problems. Int. J. Mech. Sci. 6, 117–144 (1964)CrossRefGoogle Scholar
  20. 20.
    Jones, A.D.; Brown, G.L.: Determination of two-stroke engine exhaust noise by the method of characteristics. J. Sound Vib. 82, 305–327 (1982)CrossRefGoogle Scholar
  21. 21.
    Pałczyński, T.: A hybrid method of estimating pulsating flow parameters in the space–time domain. Mech. Syst. Signal Process. 89, 58–66 (2017)CrossRefGoogle Scholar
  22. 22.
    Morse, P.M.; Boden, R.H.; Schecter, H.: Acoustic vibrations and internal combustion engine performance I. Standing waves in the intake pipe system. J. Appl. Phys. 9, 16–23 (1938)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Sahar Hadjkacem
    • 1
    Email author
  • Mohamed Ali Jemni
    • 1
  • Mohamed Salah Abid
    • 1
  1. 1.Laboratory of the Electromechanical Systems, Mechanical Department, National School Engineers of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations