Synthesis and Characterization of LiMnPO\(_{4}\) Cathode Material via Dittmarite-Type \(\hbox {NH}_{4}\hbox {MnPO}_{4}{\cdot }\hbox {H}_{2}\hbox {O}\) as an Intermediate Compound

  • R. El Khalfaouy
  • A. Elabed
  • A. Addaou
  • A. Laajeb
  • A. Lahsini
Research Article - Chemistry
  • 11 Downloads

Abstract

Dittmarite-type compound \(\hbox {NH}_{4}\hbox {MnPO}_{4}{\cdot }\hbox {H}_{2}\hbox {O}\) was used as a precursor for the synthesis of nanostructured \(\text {LiMnPO}_{4}\) phospho-olivine material with spherical-like morphology. \(\hbox {NH}_{4}\hbox {MnPO}_{4}{\cdot }\hbox {H}_{2}\hbox {O}\) intermediate compound was successfully synthesized by a new method based on precipitation technique. \(\text {LiMnPO}_{4}\) composite was generated by solid-state reaction of the pre-synthesized compound \(\hbox {NH}_{4}\hbox {MnPO}_{4}{\cdot }\hbox {H}_{2}\hbox {O}\) with lithium chloride LiCl. The dehydration of \(\hbox {NH}_{4}\hbox {MnPO}_{4}{\cdot } \hbox {H}_{2}\hbox {O}\) and \(\hbox {NH}_{4}\hbox {MnPO}_{4}{\cdot } \hbox {H}_{2}\hbox {O}+\hbox {LiCl}\) products was studied by differential thermal analysis/thermogravimetric analysis. Structural and morphological characterization of both \(\hbox {NH}_{4}\hbox {MnPO}_{4}{\cdot } \hbox {H}_{2}\hbox {O}\) and \(\text {LiMnPO}_{4}\) was performed by X-ray diffraction analysis, scanning electron microscope, Fourier transform infrared spectroscopy, energy dispersion spectroscopy and Raman spectra analyses. It was found that the morphology and texture of the dittmarite-type precursor results in non-uniform distribution with a preferred orientation along the [0 1 0] direction. Contrariwise, the LMP nanoparticles are packaged together in a compact manner with spherical shape and good distribution, with various sizes in the range of 0.9 ± 0.1 \(\upmu \)m.

Keywords

Synthesis Olivine Precipitation Solid-state Lithium-ion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cölfen, H.; Antonietti, M.: Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005)CrossRefGoogle Scholar
  2. 2.
    Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)CrossRefGoogle Scholar
  3. 3.
    Zaghib, K.; Mauger, A.; Julien, C.M.: Olivine-based cathode materials. In: Zhang, Z., Zhang, S. (eds.) Rechargeable Batteries. Green Energy and Technology. Springer, Cham (2015)Google Scholar
  4. 4.
    Zaghib, K.; Ravet, N.; Gauthier, M.; Gendron, F.; Mauger, A.; Goodenough, J.B.; Julien, C.M.: Optimized electrochemical performance of \(\text{ LiFePO }_{4}\) at \(60\,^{\circ }\text{ C }\) with purity controlled by SQUID magnetometry. J. Power Sources 163, 560–566 (2006)CrossRefGoogle Scholar
  5. 5.
    Zaghib, K.; Mauger, A.; Goodenough, J.B.; Gendron, F.; Julien, C.M.: Electronic, optical, and magnetic properties of \(\text{ LiFePO }_{4}\): small magnetic polaron effects. Chem. Mater. 19, 3740–3747 (2007)CrossRefGoogle Scholar
  6. 6.
    Konarova, M.; Taniguchi, I.: Preparation of carbon coated \(\text{ LiFePO }_{4}\) by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol. 191, 111–116 (2009)CrossRefGoogle Scholar
  7. 7.
    Dong, Y.Z.; Zhao, Y.M.; Chen, Y.H.; He, Z.F.; Kuang, Q.: Optimized carbon coated \(\text{ LiFePO }_{4}\) cathode material for lithium-ion batteries. Mater. Chem. Phys. 115, 245–250 (2009)CrossRefGoogle Scholar
  8. 8.
    Croce, F.; D’ Epifanio, A.; Hassoun, J.; Deptula, A.; Olczac, T.; Scrosati, B.: A novel concept for the synthesis of an improved \(\text{ LiFePO }_{4}\) lithium battery cathode. Electrochem. Solid-State Lett. 5, A47 (2002)CrossRefGoogle Scholar
  9. 9.
    Dominko, R.; Gaberscek, M.; Drofenik, J.; Bele, M.; Pejoynik, S.; Jammik, J.: The role of carbon black distribution in cathodes for Li ion batterie. J. Power Sources 119–121, 770–773 (2003)CrossRefGoogle Scholar
  10. 10.
    Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Pejovnik, S.; Jamnik, J.: Impact of the carbon coating thickness on the electrochemical performance of \(\text{ LiFePO }_{4}\)/C composites. J. Electrochem. Soc. 152, A607 (2005)CrossRefGoogle Scholar
  11. 11.
    Yun, N.J.; Ha, H.W.; Jeong, K.H.; Park, H.Y.; Kim, K.: Synthesis and electrochemical properties of olivine-type \(\text{ LiFePO }_{4}\)/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. J. Power Sources 160, 1361–1368 (2006)CrossRefGoogle Scholar
  12. 12.
    Wang, K.; Cai, R.; Yuan, T.; Yu, X.; Ran, R.; Shao, Z.: Optimized carboncoated \(\text{ LiFePO }_{4}\) cathode material for lithium-ion batteries. Electrochim. Acta 54, 2861–2868 (2009)CrossRefGoogle Scholar
  13. 13.
    Kim, H.S.; Cho, B.W.; Cho, W.I.: Cycling performance of \(\text{ LiFePO }_{4}\) cathode material for lithium secondary batteries. J. Power Sources 132, 235–239 (2004)CrossRefGoogle Scholar
  14. 14.
    Kim, T.H.; Parka, H.S.; Leeb, M.H.; Song, H.K.: Restricted growth of \(\text{ LiMnPO }_{4}\) nanoparticles evolved from a precursor seed. J. Power Sources 210, 1–6 (2012)CrossRefGoogle Scholar
  15. 15.
    Kim, J.-K.; Shin, C.-R.; Ahn, J.-H.; Matic, A.; Jacobsson, P.: Highly porous LiMnPO\(_{4}\) in combination with an ionic liquid-based polymer gel electrolyte for lithium batteries. Electrochem. Commun. 13, 1105–1108 (2011)CrossRefGoogle Scholar
  16. 16.
    Guo, H.; Wu, C.; Xie, J.; Zhang, S.; Cao, G.; Zhao, X.: Controllable synthesis of high-performance LiMnPO\(_{4}\) nanocrystals by a facile one-spot solvothermal process. J. Mater. Chem. A 2, 10581–10588 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhang, L.; Qu, Q.; Zhang, L.; Li, J.; Zheng, H.: Confined synthesis of hierarchical structured LiMnPO\(_{4}\)/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries. J. Mater. Chem. A 2, 711–719 (2014)CrossRefGoogle Scholar
  18. 18.
    Koleva, V.; Zhecheva, E.; Stoyanova, R.: Facile synthesis of LiMnPO\(_{4}\) olivines with a plate-like morphology from a dittmarite-type KMnPO\(_{4}{\cdot }\text{ H }_{2}\)O precursor. Dalton Trans. 40, 7385 (2011)CrossRefGoogle Scholar
  19. 19.
    Li, W.; Gao, J.; Ying, J.; Wan, C.; Jiang, C.: Preparation and characterization of \(\text{ LiFePO }_{4}\) from a novel precursor of \(\text{ NH }_{4}\text{ FePO }_{4}{\cdot }\text{ H }_{2}\text{ O }\). J. Electrochem. Soc. 153, F194–F198 (2006)CrossRefGoogle Scholar
  20. 20.
    Lloris, J.M.; Pérez Vicente, C.; Tirado, J.L.: Improvement of the electrochemical performance of LiCoPO\(_{4}\) 5 V material using a novel synthesis procedure. Electrochem. Solid State Lett 5, A234–A237 (2002)CrossRefGoogle Scholar
  21. 21.
    Liu, J.; Dongge, H.; Huang, T.; Aishui, Y.: Synthesis of flower-like LiMnPO\(_{4}\)/C with precipitated \(\text{ NH }_{4}\text{ MnPO }_{4}{\cdot } \text{ H }_{2}\text{ O }\) as precursor. J. Alloys Compd. 518, 58–62 (2002)CrossRefGoogle Scholar
  22. 22.
    Koleva, V.; Stoyanova, R.; Zhecheva, E.; Nihtianova, D.: Dittmarite precursors for structure and morphology directed synthesis of lithium manganese phospho-olivine nanostructures. CrystEngComm 16, 7515–7524 (2014)CrossRefGoogle Scholar
  23. 23.
    Wenwei, W.; Yanjin, F.; Xuehang, W.; Sen, L.; Shushu, L.: Preparation via solid-state reaction at room temperature and characterization of layered nanocrystalline \(\text{ NH }_{4}\text{ MnPO }_{4}{\cdot }\text{ H }_{2}\text{ O }\). J. Phys. Chem. Solids 70, 584–587 (2009)CrossRefGoogle Scholar
  24. 24.
    Chunyang, W.; Xie, J.; Cao, G.; Zhao, X.; Zhang, S.: Ordered \(\text{ LiMPO }_{4}\) (M = Fe, Mn) nanorods synthesized from \(\text{ NH }_{4}\text{ MPO }_{4}{\cdot }\text{ H }_{2}\)O microplates by stress involved ion exchange for Li-ion batteries. CrystEngComm 16, 2239–2245 (2014)CrossRefGoogle Scholar
  25. 25.
    Koleva, V.G.: Vibrational behavior of the phosphates ions in dittmarite-type compounds \(\text{ M }^\prime \text{ M }^{\prime \prime } \text{ PO }_{4}{\cdot }\text{ H }_{2}\text{ O }\) (\(\text{ M }^{\prime } =\text{ K }^{+}, \text{ NH }^{4+}\); \({\rm M}^{\prime \prime } ={\rm Mn}^{2+}, \text{ Co }^{2+}\), Ni\(^{2+})\). Spectrochim. Acta Part A 66, 413–418 (2007)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Sciences and Technologies of Process Engineering LaboratorySidi Mohamed Ben Abdellah UniversityFezMorocco
  2. 2.Microbial Biotechnology LaboratorySidi Mohamed Ben Abdellah UniversityFezMorocco

Personalised recommendations