Skip to main content
Log in

Hydraulic Characteristics and Reduction Measure for Rooster Tails Behind Spillway Piers

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

During flood discharge in a hydraulic project, rooster tails occur downstream of the piers in the spillway and have adverse effects on the operation of the discharge chute. The present paper provides an experimental study of the rooster tail generated by a pier in a chute spillway. Causes of the rooster tail were analyzed, and factors affecting the characteristics of the rooster tail were investigated. The results indicate that rooster tail height is significantly influenced by several parameters, including the spillway slope ratio, pier width and type, and outlet section water depth. A new formula was developed for estimating rooster tail height, and all the experimental data fit well in the selected experimental range. Moreover, a composite sloping-tail pier was designed based on the generation mechanism of the rooster tail. This pier can effectively eliminate rooster tail and has simple construction and lower costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maki, K.J.; Doctors, L.J.; Beck, R.F.; et al.: Transom-stern flow for high-speed craft. Aust. J. Mech. Eng. 3(2), 191–199 (2006)

    Article  Google Scholar 

  2. Doctors, L.J.: A numerical study of the resistance of transom-stern monohulls. Ship Technol. Res. 54(3), 134–144 (2006)

    Article  Google Scholar 

  3. Ghadimi, P.; Dashtimanesh, A.; Zamanian, R.; et al.: Rooster tail depression by originating a modified transom stern form using a Reynolds averaged Navier Stokes solver. Sci. Iran. Trans. B Mech. Eng. 22(3), 765–777 (2015)

    Google Scholar 

  4. Wu, J.H.; Cai, C.G.; Ji, W.; et al.: Experimental study on cavitation and water-wing for middle-piers of discharge tunnels. J. Hydrodyn. Ser. B 17(4), 429–437 (2005)

    Google Scholar 

  5. Chen, S.; Zhang, J.; Hu, M.; et al.: Experimental study on water-wing characteristics induced by piers in flood drainage culverts. Sci. Iran. Trans. A Civ. Eng. 20(5), 1320–1326 (2013)

    Google Scholar 

  6. Liu, S.H.; Sun, X.F.; Luo, J.: Unified model for splash droplets and suspended mist of atomized flow. J. Hydrodyn. Ser. B 20(1), 125–130 (2008)

    Article  Google Scholar 

  7. Lian, J.J.; Li, C.; Liu, F.; et al.: A prediction method of flood discharge atomization for high dams. J. Hydraul. Res. 52(2), 274–282 (2014)

    Article  Google Scholar 

  8. Rajaratnam, N.: Skimming flow in stepped spillways. J. Hydraul. Eng. ASCE 116(4), 587–591 (1990)

    Article  Google Scholar 

  9. Chanson, H.: Prediction of the transition nappe skimming flow on a stepped channel. J. Hydraul. Res. 34(3), 421–429 (1996)

    Article  Google Scholar 

  10. Toombes, L.; Wagner, C.; Chanson, H.: Flow patterns in nappe flow regime down low gradient stepped chutes. J. Hydraul. Res. 46(1), 4–14 (2008)

    Article  Google Scholar 

  11. Carnacina, I.; Kurdistani, S.M.; Palermo, M.; et al.: El Chaparral dam Model: Rooster Tail Formation on High Sloped Spillway, pp. 65–73. School of Civil Engineering, Brisbane (2010)

    Google Scholar 

  12. Tuna, M.C.; Emiroglu, M.E.: Effect of step geometry on local scour downstream of stepped chutes. Arab. J. Sci. Eng. 38(3), 579–588 (2013)

    Article  Google Scholar 

  13. Najafi, M.R.; Zarrati, A.R.: Numerical simulation of air-water flow in gated tunnels. Water Manag. 163(6), 289–295 (2010)

    Google Scholar 

  14. Pagliara, S.; Kurdistani, S.M.; Roshni, T.: Rooster tail wave hydraulics of chutes. J. Hydraul. Eng. ASCE 137(9), 1085–1088 (2011)

    Article  Google Scholar 

  15. Wu, J.H.; Li, D.; Ma, F.; et al.: Fin characteristics of aerator devices with lateral deflectors. J. Hydrodyn. Ser. B 25(2), 258–263 (2013)

    Article  Google Scholar 

  16. Najafi, M.R.; Kavianpour, M.R.; Roshan, U.; et al.: Controlling rooster tail development in gated tunnels. Int. J. Hydropower Dams 20(1), 60–65 (2013)

    Google Scholar 

  17. Abdolahpour, M.; Roshan, R.: Flow aeration after gate in bottom outlet tunnels. Arab. J. Sci. Eng. 39(5), 3441–3448 (2014)

    Article  Google Scholar 

  18. Duan, W.J.: The submerged sloping-tail pier—an effective measure to eliminate the crown of jumping flow. J. Sichuan Univ. (Eng. Sci. Ed.) 1, 63–67 (1982). (in Chinese)

    Google Scholar 

  19. Reinauer, R.; Hager, W.H.: Supercritical flow behind chute piers. J. Hydraul. Eng. ASCE 120(11), 1292–1308 (1994)

    Article  Google Scholar 

  20. Reinauer, R.; Hager, W.H.: Pier waves in sloping chutes. Int. J. Hydropower Dams 4(3), 100–103 (1997)

    Google Scholar 

  21. Wu, J.H.; Cai, C.G.; Ji, W.; et al.: Hydraulic characteristics of water-wings for the middle-pier of a discharge tunnel. J. Hydrodyn. Ser. B 18(5), 567–571 (2006)

    Article  Google Scholar 

  22. Wu, J.H.; Yan, Z.M.: Hydraulic characteristics of bottom underlay-type pier for water-wing control. J. Hydrodyn. Ser. B 20(6), 735–740 (2008)

    Article  MathSciNet  Google Scholar 

  23. Rouse, H.; Bhoota, B.V.; Hsu, E.Y.: High-velocity flow in open channels: a symposium: design of channel expansion. Trans. Am. Soc. Civ. Eng. 116(1), 347–363 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Diao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Diao, M., Ma, Q. et al. Hydraulic Characteristics and Reduction Measure for Rooster Tails Behind Spillway Piers. Arab J Sci Eng 43, 5597–5604 (2018). https://doi.org/10.1007/s13369-018-3237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3237-8

Keywords

Navigation