Artocarpus odoratissimus Leaves as an Eco-friendly Adsorbent for the Removal of Toxic Rhodamine B Dye in Aqueous Solution: Equilibrium Isotherm, Kinetics, Thermodynamics and Regeneration Studies

  • Nur Afiqah Hazirah Mohamad Zaidi
  • Linda B. L. Lim
  • Namal Priyantha
  • Anwar Usman
Research Article - Chemical Engineering
  • 6 Downloads

Abstract

The present study investigates the use of cheap, readily available natural adsorbent, Artocarpus odoratissimus leaves (TL), for the removal of toxic rhodamine B (RhB) dye from simulated wastewater. TL showed resilience when tested in a wide range of pH and was able to maintain its adsorption capacity with the highest removal of RhB at pH 3. Investigation of the effect of ionic strength was carried out using four different salts, namely \(\hbox {KNO}_{3}\), NaCl, \(\hbox {NaNO}_{3}\) and KCl. Of these, only \(\hbox {KNO}_{3}\) influenced the removal of RhB dye, while the other three salts did not show any significant effect. Maximum adsorption capacity, \(q_{\max }\), of 104.96 mg/g was based on the Langmuir isotherm being the best fit model with highest \(R^{2}\) value close to unity and lowest error values. Adsorption mechanism followed the pseudo second-order kinetics with rate constant \(k_{2}\) of 1.274 and 0.616 g/mmol min using 100 and 500 mg/L dye, respectively. Regeneration studies confirmed TL can be regenerated and reused thereby adding value to TL as a potential adsorbent in remediation of dye wastewater. SEM and FTIR were used to characterize the adsorption of RhB onto TL.

Keywords

Artocarpus odoratissimus leaves Low-cost adsorbent Adsorption isotherm Toxic cationic dye Regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the Government of Negara Brunei Darussalam and the Universiti Brunei Darussalam for the PhD scholarship support for Nur Afiqah Hazirah Mohamad Zaidi.

References

  1. 1.
    Pirbazari, A.E.; Saberikhah, E.; Badrouh, M.; Emami, M.S.: Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resour. Ind. 6, 64–80 (2014)CrossRefGoogle Scholar
  2. 2.
    Nawaz, M.S.; Ahsan, M.: Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alex. Eng. J. 53(3), 717–722 (2014)CrossRefGoogle Scholar
  3. 3.
    Fosso-Kankeu, E.; Webster, A.; Ntwampe, I.O.; Waanders, F.B.: Coagulation/flocculation potential of polyaluminium chloride and bentonite clay tested in the removal of methyl red and crystal violet. Arab. J. Sci. Eng. 42(4), 1389–1397 (2017)CrossRefGoogle Scholar
  4. 4.
    Verma, A.; Sangwan, P.; Dixit, D.: Sonophotocatalytic degradation studies of alizarin reactive red dye. Arab. J. Sci. Eng. 39(11), 7477–7482 (2014)CrossRefGoogle Scholar
  5. 5.
    Vaiano, V.; Matarangolo, M.; Sacco, O.; Sannino, D.: Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl. Catal. B Environ. 209, 621–630 (2017)CrossRefGoogle Scholar
  6. 6.
    Castro, F.D.; Bassin, J.P.; Dezotti, M.: Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products. Environ. Sci. Poll. Res. 24(7), 6307–6316 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, X.; Jin, X.; Zhao, N.; Angelidaki, I.; Zhang, Y.: Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresour. Technol. 228, 322–329 (2017)CrossRefGoogle Scholar
  8. 8.
    Clematis, D.; Cerisola, G.; Panizza, M.: Electrochemical oxidation of a synthetic dye using a BDD anode with a solid polymer electrolyte. Electrochem. Commun. 75, 21–24 (2017)CrossRefGoogle Scholar
  9. 9.
    Maleki, A.; Daraei, H.; Hosseini, E.A.; Azizi, S.; Faez, E.; Gharibi, F.: Azo dye DB71 degradation using ultrasonic-assisted Fenton process: modeling and process optimization. Arab. J. Sci. Eng. 40(2), 295–301 (2015)CrossRefGoogle Scholar
  10. 10.
    Bandari, F.; Safa, F.; Shariati, S.: Application of response surface method for optimization of adsorptive removal of eriochrome black T using magnetic multi-wall carbon nanotube nanocomposite. Arab. J. Sci. Eng. 40(12), 3363–3372 (2015)CrossRefGoogle Scholar
  11. 11.
    Senthilkumar, S.; Prabhu, H.J.; Perumalsamy, M.: Response surface optimization for biodegradation of textile azo dyes using isolated bacterial strain Pseudomonas sp. Arab. J. Sci. Eng. 38(9), 2279–2291 (2013)CrossRefGoogle Scholar
  12. 12.
    Deniz, F.; Karaman, S.; Saygideger, S.D.: Biosorption of a model basic dye onto Pinus brutia Ten.: evaluating of equilibrium, kinetic and thermodynamic data. Desalination 270(1), 199–205 (2011)CrossRefGoogle Scholar
  13. 13.
    Heydartaemeh, M.R.; Ardejani, F.D.; Badii, K.; Shabani, K.S.; Mousavi, S.E.: FeCl\(_{2}\)/FeCl\(_{3}\)/perlite nanoparticles as a novel magnetic material for adsorption of green malachite dye. Arab. J. Sci. Eng. 39(5), 3383–3392 (2014)CrossRefGoogle Scholar
  14. 14.
    Liu, Z.; Zhong, X.; Wang, Y.; Ding, Z.; Wang, C.; Wang, G.; Liao, S.: An efficient adsorption of manganese oxides/activated carbon composite for lead (II) ions from aqueous solution. Arab. J. Sci. Eng. (2017).  https://doi.org/10.1007/s13369-017-2514-2 Google Scholar
  15. 15.
    Lim, L.B.L.; Priyantha, N.; Cheng, H.H.; Mohamad Zaidi, N.A.H.: Perkia speciosa (Petai) pod as potential low-cost adsorbent for the removal of toxic crystal violet dye. Sci. Bruneiana 15, 99–106 (2016)Google Scholar
  16. 16.
    Mohammed, R.R.: Removal of heavy metals from waste water using black teawaste. Arab. J. Sci. Eng. 37(6), 1505–1520 (2012)CrossRefGoogle Scholar
  17. 17.
    Dahri, M.K.; Kooh, M.R.R.; Lim, L.B.L.: Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alex. Eng. J. 54(4), 1253–1263 (2015)CrossRefGoogle Scholar
  18. 18.
    Chieng, H.I.; Lim, L.B.L.; Priyantha, N.; Tennakoon, D.T.B.: Sorption characteristics of peat of Brunei Darussalam III: equilibrium and kinetics studies on adsorption of crystal violet (CV). Int. J. Earth Sci. Eng. 6, 791–801 (2013)Google Scholar
  19. 19.
    Reddy, N.A.; Lakshmipathy, R.; Sarada, N.C.: Application of Citrullus lanatus rind as biosorbent for removal of trivalent chromium from aqueous solution. Alex. Eng. J. 53(4), 969–975 (2014)CrossRefGoogle Scholar
  20. 20.
    Lim, L.B.L.; Priyantha, N.; Chan, C.M.; Matassan, D.; Chieng, H.I.; Kooh, M.R.R.: Adsorption behavior of methyl violet 2B using duckweed: equilibrium and kinetics studies. Arab. J. Sci. Eng. 39(9), 6757–6765 (2014)CrossRefGoogle Scholar
  21. 21.
    Postai, D.L.; Rodrigues, C.A.: Adsorption of cationic dyes ssing waste from fruits of Eugenia umbelliflora berg (Myrtaceae). Arab. J. Sci. Eng. (2017).  https://doi.org/10.1007/s13369-017-2819-1 Google Scholar
  22. 22.
    Kooh, M.R.R.; Dahri, M.K.; Lim, L.B.L.; Lim, L.H.: Batch adsorption studies on the removal of acid blue 25 from aqueous solution using Azolla pinnata and soya bean waste. Arab. J. Sci. Eng. 41(7), 2453–2464 (2016)CrossRefGoogle Scholar
  23. 23.
    Khalid, A.; Zubair, M.: A comparative study on the adsorption of Eriochrome Black T dye from aqueous solution on graphene and acid-modified graphene. Arab. J. Sci. Eng. (2017).  https://doi.org/10.1007/s13369-017-2543-x Google Scholar
  24. 24.
    Mittal, A.: Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. J. Hazard. Mater. 133(1), 196–202 (2006)CrossRefGoogle Scholar
  25. 25.
    Tahir, U.; Yasmin, A.; Khan, U.H.: Phytoremediation: potential flora for synthetic dyestuff metabolism. J. King Saud Univ. Sci. 28(2), 119–130 (2016)CrossRefGoogle Scholar
  26. 26.
    Uddin, M.; Rukanuzzaman, M.; Khan, M.; Rahman, M.; Islam, M.: Jackfruit (Artocarpus heterophyllus) leaf powder: an effective adsorbent for removal of methylene blue from aqueous solutions. Ind. J. Chem. Technol. 16(2), 142–149 (2009)Google Scholar
  27. 27.
    Nazari, M.; Forouzandeh, M.A.; Divarathne, C.M.; Sidiroglou, F.; Martinez, M.R.; Konstas, K.; Muir, B.W.; Hill, A.J.; Duke, M.C.; Hill, M.R.: UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection. Opt. Lett. 41(8), 1696–1699 (2016)CrossRefGoogle Scholar
  28. 28.
    Laili, A.N.; Ananingsih, I.; Wiyasa, I.W.A.; Indrawan, I.W.A.; Barlianto, W.; Yueniwati, Y.: Protective effect of combined vitamin C and E against ovarian and endometrial toxicity in rats that receiving oral rhodamine B. Biomark. Genom. Med. 7(4), 154–158 (2015)CrossRefGoogle Scholar
  29. 29.
    De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M.: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016)Google Scholar
  30. 30.
    Dahri, M.K.; Chieng, H.I.; Lim, L.B.L.; Priyantha, N.; Mei, C.C.: Cempedak durian (Artocarpus sp.) peel as a biosorbent for the removal of toxic methyl violet 2B from aqueous solution. Korean Chem. Eng. Res. 53(5), 576–583 (2015)CrossRefGoogle Scholar
  31. 31.
    Lim, L.B.L.; Priyantha, N.; Chieng, H.I.; Dahri, M.K.: Artocarpus camansi Blanco (Breadnut) core as low-cost adsorbent for the removal of methylene blue: equilibrium, thermodynamics, and kinetics studies. Desalin. Water Treat. 57(12), 5673–5685 (2016)CrossRefGoogle Scholar
  32. 32.
    Priyantha, N.; Lim, L.B.L.; Tennakoon, D.T.B.; Mohd Mansor, N.H.; Dahri, M.K.; Chieng, H.I.: Breadfruit (Artocarpus altilis) waste for bioremediation of Cu (II) and Cd (II) ions from aqueous medium. Ceylon J. Sci. Phys. Sci. 17, 19–29 (2013)Google Scholar
  33. 33.
    Lim, L.B.L.; Priyantha, N.; Tennakoon, D.T.B.; Dahri, M.K.: Biosorption of cadmium (II) and copper (II) ions from aqueous solution by core of Artocarpus odoratissimus. Environ. Sci. Pollut. Res. 19(8), 3250–3256 (2012)CrossRefGoogle Scholar
  34. 34.
    Dahri, M.K.; Lim, L.B.L.; Priyantha, N.; Chan, C.M.: Removal of Acid blue 25 using Cempedak Durian peel from aqueous medium: isotherm, kinetics and thermodynamics studies. Int. Food Res. J. 23(3), 1154–1163 (2016)Google Scholar
  35. 35.
    Lim, L.B.L.; Priyantha, N.; Hei Ing, C.; Dahri, M.K.; Tennakoon, D.T.B.; Zehra, T.; Suklueng, M.: Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalin. Water Treat. 53(4), 964–975 (2015)Google Scholar
  36. 36.
    Lim, L.B.L.; Priyantha, N.; Lai, M.H.F.; Salleha, R.M.; Zehra, T.: Utilization of Artocarpus hybrid (Nanchem) skin for the removal of Pb (II): equilibrium, thermodynamics, kinetics and regeneration studies. Int. Food Res. J. 22(3), 1043–1052 (2015)Google Scholar
  37. 37.
    Tang, Y.P.; Linda, B.L.L.; Franz, L.W.: Proximate analysis of Artocarpus odoratissimus (Tarap) in Brunei Darussalam. Int. Food Res. J. 20(1), 409–415 (2013)Google Scholar
  38. 38.
    Lim, L.B.L.; Chieng, H.I.; Wimmer, F.L.: The nutrient composition of Artocarpus champeden and its hybrid (Nanchem) in Negara Brunei Darussalam. ASEAN J. Sci. Technol. Dev. 28, 122–138 (2011)CrossRefGoogle Scholar
  39. 39.
    Hameed, B.H.: Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J. Hazard. Mater. 162(1), 344–350 (2009)CrossRefGoogle Scholar
  40. 40.
    Lim, L.B.L.; Priyantha, N.; Mohamad Zaidi, N.A.H.: A superb modified new adsorbent, Artocarpus odoratissimus leaves, for removal of cationic methyl violet 2B dye. Environ. Earth Sci. 75(16), 1179 (2016)CrossRefGoogle Scholar
  41. 41.
    Lim, L.B.L.; Priyantha, N.; Cheng, H.H.; Mohamad Zaidi, N.A.H.: Adsorption characteristics of Artocarpus odoratissimus leaf toward removal of toxic crystal violet dye: isotherm, thermodynamics and regeneration studies. J. Environ. Biotechnol. Res. 4(1), 32–40 (2016)Google Scholar
  42. 42.
    Chieng, H.I.; Lim, L.B.L.; Priyantha, N.: Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalin. Water Treat. 55(3), 664–677 (2015)CrossRefGoogle Scholar
  43. 43.
    Gad, H.M.H.; El-Sayed, A.A.: Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. J. Hazard. Mater. 168(2), 1070–1081 (2009)CrossRefGoogle Scholar
  44. 44.
    Deshpande, A.V.; Kumar, U.: Effect of method of preparation on photophysical properties of Rh-B impregnated sol-gel hosts. J. Non-Cryst. Solids 306(2), 149–159 (2002)CrossRefGoogle Scholar
  45. 45.
    Arivoli, S.; Henkuzhali, M.: Kinetic, mechanistic, thermodynamic and equilibrium studies on the adsorption of Rhodamine B by acid activated low cost carbon. J. Chem. 5(2), 187–200 (2008)Google Scholar
  46. 46.
    Wang, Z.; Shen, D.; Shen, F.; Wu, C.; Gu, S.: Kinetics, equilibrium and thermodynamics studies on biosorption of Rhodamine B from aqueous solution by earthworm manure derived biochar. Int. Biodeterior. Biodegrad. 120, 104–114 (2017)CrossRefGoogle Scholar
  47. 47.
    Kooh, M.R.R.; Lim, L.B.L.; Lim, L.H.; Dahri, M.K.: Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method. Environ. Monit. Assess. 188(2), 108 (2016)CrossRefGoogle Scholar
  48. 48.
    Kooh, M.R.R.; Dahri, M.K.; Lim, L.B.L.: The removal of rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent. Cogent Environ. Sci. 2(1), 1140553 (2016)CrossRefGoogle Scholar
  49. 49.
    Walia, T.P.S.; Kansal, I.: Removal of Rhodamine-B by adsorption on walnut shell charcoal. J. Surf. Sci. Technol. 24(3–4), 179–193 (2008)Google Scholar
  50. 50.
    Hu, Y.; Guo, T.; Ye, X.; Li, Q.; Guo, M.; Liu, H.; Wu, Z.: Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J. 228, 392–397 (2013)CrossRefGoogle Scholar
  51. 51.
    Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)CrossRefGoogle Scholar
  52. 52.
    Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57(385471), 1100–1107 (1906)Google Scholar
  53. 53.
    Temkin, M.I.; Pyzhev, V.: Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 12(3), 217–222 (1940)Google Scholar
  54. 54.
    Redlich, O.J.P.; Peterson, D.L.: A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024–1024 (1959)CrossRefGoogle Scholar
  55. 55.
    Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)CrossRefGoogle Scholar
  56. 56.
    Sharma, S.; Imran, A.: Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Mangifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J. Toxicol. Environ. Health Sci. 3(10), 286–297 (2011)Google Scholar
  57. 57.
    Prasad, A.L.; Santhi, T.: Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilotica leaves as an eco friendly adsorbent. Sustain. Environ. Res. 22(2), 113–122 (2012)Google Scholar
  58. 58.
    Hossain, M.A.; Alam, M.S.: Adsorption kinetics of Rhodamine-B on used black tea leaves. Iran. J. Environ. Health Sci. Eng. 9(1), 2 (2012)CrossRefGoogle Scholar
  59. 59.
    Kooh, M.R.R.; Dahri, M.K.; Lim, L.B.L.: Jackfruit seed as a sustainable adsorbent for the removal of Rhodamine B dye. J. Environ. Biotechnol. Res. 4(1), 7–16 (2016)Google Scholar
  60. 60.
    Khan, T.A.; Dahiya, S.; Ali, I.: Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 69, 58–66 (2012)CrossRefGoogle Scholar
  61. 61.
    El Haddad, M.; Mamouni, R.; Saffaj, N.: Adsorptive removal of basic dye rhodamine B from aqueous media onto animal bone meal as new low cost adsorbent. Glob. J. Hum. Soc. Sci. Res. 12(10-B) (2012)Google Scholar
  62. 62.
    Shah, J.; Jan, M.R.; Haq, A.; Khan, Y.: Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies. Front. Chem. Sci. Eng. 7(4), 428–436 (2013)CrossRefGoogle Scholar
  63. 63.
    Liu, K.; Li, H.; Wang, Y.; Gou, X.; Duan, Y.: Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Coll. Surf. A Physicochem. Eng. Asp. 477, 35–41 (2015)CrossRefGoogle Scholar
  64. 64.
    Qi, Z.-P.; Liu, Q.; Zhu, Z.-R.; Kong, Q.; Chen, Q.-F.; Zhao, C.-S.; Liu, Y.-Z.; Miao, M.-S.; Wang, C.: Rhodamine B removal from aqueous solutions using loofah sponge and activated carbon prepared from loofah sponge. Desalin. Water Treat. 57(60), 29421–29433 (2016)CrossRefGoogle Scholar
  65. 65.
    Mohammed, M.I.; Baytak, S.: Synthesis of bentonite-carbon nanotube nanocomposite and its adsorption of Rhodamine dye from water. Arab. J. Sci. Eng. 41(12), 4775–4785 (2016)CrossRefGoogle Scholar
  66. 66.
    Postai, D.L.; Demarchi, C.A.; Zanatta, F.; Melo, D.C.C.; Rodrigues, C.A.: Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent. Alex. Eng. J. 55(2), 1713–1723 (2016)CrossRefGoogle Scholar
  67. 67.
    Selvam, P.P.; Preethi, S.; Basakaralingam, P.; Thinakaran, N.; Sivasamy, A.; Sivanesan, S.: Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater. 155(1), 39–44 (2008)CrossRefGoogle Scholar
  68. 68.
    Kumar, V.; Kaith, B.S.; Jindal, R.: Synthesis of hybrid ion exchanger for rhodamine B dye removal: equilibrium, kinetic and thermodynamic studies. Ind. Eng. Chem. Res. 55(39), 10492–10499 (2016)CrossRefGoogle Scholar
  69. 69.
    Postai, D.L.; Rodrigues, C.A.: Adsorption of cationic dyes using waste from fruits of Eugenia umbelliflora Berg (Myrtaceae). Arab. J. Sci. Eng. (2017).  https://doi.org/10.1007/s13369-017-2819-1
  70. 70.
    Lagergren, S.: Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Sven. Vetenskapsakademiens Handl. 24, 1–39 (1898)Google Scholar
  71. 71.
    Ho, Y.-S.; McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999)CrossRefGoogle Scholar
  72. 72.
    Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.-H.; Indraswati, N.; Ismadji, S.: Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard. Mater. 162(2), 616–645 (2009)CrossRefGoogle Scholar
  73. 73.
    Attallah, O.A.; Al-Ghobashy, M.A.; Nebsen, M.; Salem, M.Y.: Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv. 6(14), 11461–11480 (2016)CrossRefGoogle Scholar
  74. 74.
    Plazinski, W.; Rudzinski, W.; Plazinska, A.: Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv. Coll. Interface Sci. 152(1), 2–13 (2009)CrossRefGoogle Scholar
  75. 75.
    Saha, P.; Chowdhury, S.: Insight Into adsorption thermodynamics. In: Tadashi, M. (ed.) Thermodynamics. InTech.  https://doi.org/10.5772/13474 (2011)
  76. 76.
    Hayeeye, F.; Sattar, M.; Chinpa, W.; Sirichote, O.: Kinetics and thermodynamics of Rhodamine B adsorption by gelatin/activated carbon composite beads. Coll. Surf. A Physicochem. Eng. Asp. 513, 259–266 (2017)CrossRefGoogle Scholar
  77. 77.
    Akar, E.; Altinişik, A.; Seki, Y.: Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution. Ecol. Eng. 52, 19–27 (2013)CrossRefGoogle Scholar
  78. 78.
    Altınışık, A.; Gür, E.; Seki, Y.: A natural sorbent, Luffa cylindrica for the removal of a model basic dye. J. Hazard. Mater. 179(1), 658–664 (2010)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Nur Afiqah Hazirah Mohamad Zaidi
    • 1
  • Linda B. L. Lim
    • 1
  • Namal Priyantha
    • 2
    • 3
  • Anwar Usman
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Brunei DarussalamGadong, Bandar Seri BegawanBrunei Darussalam
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka

Personalised recommendations