Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1883–1902 | Cite as

Design of Interval Type-2 Fractional-Order Fuzzy Logic Controller for Redundant Robot with Artificial Bee Colony

  • Anupam KumarEmail author
  • Vijay Kumar
Research Article - Electrical Engineering


A five-degree of freedom redundant robot manipulator is a MIMO, extremely nonlinear and dynamically coupled system wherein the parameter variations, external disturbances, and random noise adversely affect the system performances. From this, it necessitates that the controller designed for redundant robot system should efficiently handle such complexities. In this paper, the novel application of artificial bee colony (ABC) algorithm to optimize the fractional-order operators and scaling factors of interval type-2 fractional-order fuzzy PID (IT2FO-FPID) controller are proposed for redundant robotic system for trajectory tracking problem. In order to show the superiority of new IT2FO-FPID controller, the proposed controller structure is also implemented for benchmark fractional-order plants and uncertain inverted pendulum system. Further, the tuning of each controller’s parameters is done with ABC algorithm for each plant. For investigating the effectiveness of the proposed controllers, the performances of the proposed controller are compared with integer order IT2FPID, type-1 fuzzy PID (T1FPID), and traditional PID controllers. The simulation results show that the IT2FO-FPID controller produces superior results for fractional-order plants, inverted pendulum system, and redundant robot manipulator. Further, the robustness analysis is conducted for load disturbance rejection for fractional-order plants, inverted pendulum system. Moreover, the robustness analysis is also investigated for robot manipulator in the presence of model uncertainties, load disturbance, and random noise. After numerical simulations, it is found that IT2FO-FPID controller is producing superior results than its conventional counterparts in the presence of robustness.


Interval type-2 fuzzy logic controller Fractional-order PID controller Artificial bee colony Inverted pendulum system Robot trajectory tracking Robustness testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spong, M.W.M.; Vidyasagar, M.: Robot Dynamic and Control. Wiley, Hoboken (2004)Google Scholar
  2. 2.
    Cao, J.; Li, P.; Liu, H.: An interval fuzzy controller for vehicle active suspension systems. IEEE Trans. Intell. Trans. Syst. 11, 885–895 (2010)CrossRefGoogle Scholar
  3. 3.
    Liu, Y.; Gao, Y.; Gao, Z.; Wang, H.; Li, P.: Simple nonlinear predictive control strategy for chemical processes using sparse kernel learning with polynomial form. Ind. Eng. Chem. Res. 49, 8209–8218 (2010)CrossRefGoogle Scholar
  4. 4.
    Kumar, A.; Gaidhane, P.J.; Kumar, V.: A nonlinear fractional order PID controller applied to redundant robot manipulator. In: 6th IEEE International Conference on Computer Application in Electrical Engineering—Recent Advances, pp. 545–550 (2017)Google Scholar
  5. 5.
    Li, W.; Chang, X.G.; Wahl, F.M.; Farrell, J.: Tracking control of a manipulator under uncertainty by FUZZY P + ID controller. Fuzzy Sets Syst. 122, 125–137 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kumar, A.; Kundu, S.; Kumar, V.: Evolving single input FLC for double inverted pendulum. In: International Conference on Soft Computing Techniques and Implementations, ICSCTI, vol. 2015, pp. 34–38 (2015)Google Scholar
  7. 7.
    Pan, I.; Das, S.; Gupta, A.: Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay. ISA Trans. 50, 28–36 (2011)CrossRefGoogle Scholar
  8. 8.
    Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2, 20–29 (2007)Google Scholar
  9. 9.
    Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2, 30–43 (2007)CrossRefGoogle Scholar
  10. 10.
    Mendel, J.M.; John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 117–127 (2002)CrossRefGoogle Scholar
  11. 11.
    El-Nagar, A.M.; El-Bardini, M.: Practical realization for the interval type-2 fuzzy PD + I controller using a low-cost microcontroller. Arab. J. Sci. Eng. 39, 6463–6476 (2014)CrossRefGoogle Scholar
  12. 12.
    Castillo, O.; Patricia, M.: Type-2 Fuzzy Logic: Theory and Applications. Springer, Berlin (2008)zbMATHGoogle Scholar
  13. 13.
    Mendel, J.M.; John, R.I.; Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14, 808–821 (2006)CrossRefGoogle Scholar
  14. 14.
    Kumbasar, T.; Hagras, H.: Big bang–big crunch optimization based interval type-2 fuzzy PID cascade controller design strategy. Inf. Sci. (Ny) 282, 277–295 (2014)CrossRefGoogle Scholar
  15. 15.
    Kumar, A.; Panda, M.K.; Kundu, S.; Kumar, V.: Designing of an interval type-2 fuzzy logic controller for magnetic levitation system with reduced rule base. In: In Computing Communication & Networking Technologies (ICCCNT), pp. 1–8. IndiaGoogle Scholar
  16. 16.
    Kumar, A.; Kumar, V.: Artificial bee colony based design of the interval type-2 fuzzy PID controller for robot manipulator. In: Proceedings of the 2017 IEEE Region 10 Conference (TENCON), Malaysia, Nov 5–8, pp. 602–607. Malaysia (2017)Google Scholar
  17. 17.
    Kumar, A.; Kumar, V.: Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator. Expert Syst. Appl. 73, 161–177 (2017)CrossRefGoogle Scholar
  18. 18.
    Delavari, H.; Ghaderi, R.; Ranjbar, A.; Hosseinnia, S.H.; Momani, S.: Adaptive fractional PID controller for robot manipulator. In: Proceedings of 4th IFAC Workshop Fractional Differentiation and Its Applications 2010, pp. 1–7 (2010)Google Scholar
  19. 19.
    Sharma, R.; Gaur, P.; Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)CrossRefGoogle Scholar
  20. 20.
    Petráš, I.: Fractional-order feedback control of a DC motor. J. Electr. Eng. 60, 117–128 (2009)Google Scholar
  21. 21.
    Tang, Y.; Cui, M.; Hua, C.; Li, L.; Yang, Y.: Optimum design of fractional order PI\(^{\uplambda }\)D\(^{\upmu }\) controller for AVR system using chaotic ant swarm. Expert Syst. Appl. 39, 6887–6896 (2012)CrossRefGoogle Scholar
  22. 22.
    Das, S.; Pan, I.; Das, S.; Gupta, A.: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng. Appl. Artif. Intell. 25, 430–442 (2012)CrossRefGoogle Scholar
  23. 23.
    Kumar, A.; Kumar, V.: Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID Control design for 2-DOF robot manipulator. AEUE Int. J. Electron. Commun. 79, 219–233 (2017)CrossRefGoogle Scholar
  24. 24.
    Sharma, R.; Gaur, P.; Mittal, A.P.: Optimum design of fractional-order hybrid fuzzy logic controller for a robotic manipulator. Arab. J. Sci. Eng. 42(2), 739–750 (2016)CrossRefGoogle Scholar
  25. 25.
    Mishra, P.; Kumar, V.; Rana, K.P.S.: A fractional order fuzzy PID controller for binary distillation column control. Expert Syst. Appl. 42, 8533–8549 (2014)CrossRefGoogle Scholar
  26. 26.
    Kumar, A.; Kumar, V.: Performance analysis of optimal hybrid novel interval type-2 fractional order fuzzy logic controllers for fractional order systems. Expert Syst. Appl. 93, 435–455 (2018)CrossRefGoogle Scholar
  27. 27.
    Han, M.F.; Lin, C.T.; Chang, J.Y.: Differential evolution with local information for neuro-fuzzy systems optimisation. Knowl. Based Syst. 44, 78–89 (2013)CrossRefGoogle Scholar
  28. 28.
    Yang, X.-S.; Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. (Swansea, Wales) 29, 464–483 (2012)CrossRefGoogle Scholar
  29. 29.
    Gholizadeh, S.: Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network. Adv. Eng. Softw. 81, 50–65 (2015)CrossRefGoogle Scholar
  30. 30.
    Gholizadeh, S.; Seyedpoor, S.M.: Shape optimization of arch dams by metaheuristics and neural networks for frequency constraints. Sci. Iran. 18, 1020–1027 (2011)CrossRefGoogle Scholar
  31. 31.
    Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2014)CrossRefGoogle Scholar
  32. 32.
    Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. J. 8, 687–697 (2008)CrossRefGoogle Scholar
  34. 34.
    Rajasekhar, A.; Jatoth, R.K.; Abraham, A.: Design of intelligent PID/PI\(^{\uplambda }\)D\(^{\upmu }\) speed controller for chopper fed DC motor drive using opposition based artificial bee colony algorithm. Eng. Appl. Artif. Intell. 29, 13–32 (2014)CrossRefGoogle Scholar
  35. 35.
    Garg, H.: Solving structural engineering design optimization problems using an artificial bee colony algorithm. J. Ind. Manag. Optim. 10, 777–794 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sonmez, M.: Artificial bee colony algorithm for optimization of truss structures. Appl. Soft Comput. J. 11, 2406–2418 (2011)CrossRefGoogle Scholar
  37. 37.
    Ak, C.; Yildiz, A.; Akdagli, A.: A novel expression obtained by using artificial bee colony algorithm to calculate pull-in voltage of fixed-fixed micro-actuators. Microsyst. Technol. 1–9 (2017)Google Scholar
  38. 38.
    Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl. Soft Comput. 9, 625–631 (2009)CrossRefGoogle Scholar
  39. 39.
    Karaboga, D.; Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Jantzen, J.: Tuning of fuzzy PID controllers. Tech. Univ. Den. Dep. Autom. 871, 1–22 (1998)Google Scholar
  41. 41.
    Castillo, O.; Aguilar, L.; Cázarez, N.; Cárdenas, S.: Systematic design of a stable type-2 fuzzy logic controller. Appl. Soft Comput. 8, 1274–1279 (2008)CrossRefGoogle Scholar
  42. 42.
    Kumar, A.; Kumar, V.: Performance analysis of interval type-2 FSM controller applied to a magnetic levitation system. In: International Conference on Soft Computing Techniques and Implementations—(ICSCTI), pp. 107–112. India (2015)Google Scholar
  43. 43.
    Kumbasar, T.; Hagras, H.: Interval type-2 fuzzy PID controllers. In: Janusz, K., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 285–294. Springer, Berlin (2015)CrossRefGoogle Scholar
  44. 44.
    Wu, D.; Mendel, J.M.: Enhanced Karnik–Mendel algorithms. IEEE Trans. Fuzzy Syst. 17, 923–934 (2009)CrossRefGoogle Scholar
  45. 45.
    Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 47, 25–39 (2000)CrossRefGoogle Scholar
  46. 46.
    Pan, I.; Das, S.: Chaotic multi-objective optimization based design of fractional order PI\(^{\uplambda }\)D\(^{\upmu }\) controller in AVR system. Int. J. Electr. Power Energy Syst. 43, 393–407 (2012)CrossRefGoogle Scholar
  47. 47.
    Gozde, H.; Taplamacioglu, M.C.: Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J. Frankl. Inst. 348, 1927–1946 (2011)CrossRefzbMATHGoogle Scholar
  48. 48.
    Liu, Y.; Chen, W.; Wang, H.; Gao, Z.; Li, P.: Adaptive control of nonlinear time-varying processes using selective recursive kernel learning method. Ind. Eng. Chem. Res. 50, 2773–2780 (2011)CrossRefGoogle Scholar
  49. 49.
    Liu, L.; Pan, F.; Xue, D.: Variable-order fuzzy fractional PID controller. ISA Trans. 55, 227–233 (2015)CrossRefGoogle Scholar
  50. 50.
    Urrea, C.; Kern, J.: Design, simulation and comparison of controllers for a redundant robot. Case Stud. Mech. Syst. Signal Process. 3, 9–21 (2016)Google Scholar
  51. 51.
    Daachi, B.; Madani, T.; Benallegue, A.: Adaptive neural controller for redundant robot manipulators and collision avoidance with mobile obstacles. Neurocomputing 79, 50–60 (2012)CrossRefGoogle Scholar
  52. 52.
    Urrea, C.; Kern, J.: Modeling, simulation and control of a redundant SCARA-type manipulator robot. Int. J. Adv. Robot. Syst. 9, 1–14 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations