Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1917–1931 | Cite as

Design of Digital Differentiator Using the \(L_1\)-Method and Swarm Intelligence-Based Optimization Algorithms

  • Apoorva Aggarwal
  • Manjeet KumarEmail author
  • T. K. Rawat
Research Article - Electrical Engineering
  • 28 Downloads

Abstract

In this paper, a novel approach to design the digital linear-phase finite impulse response (FIR) differentiator is introduced. First, the differentiator design problem is formulated using the \(L_1\)-method. Then, the \(L_1\) optimality criterion is applied using the Bat algorithm (BA) and Particle swarm optimization (PSO) to further optimize the differentiator design. A novel fitness function is developed based on the \(L_1\)-error norm which is unique and is liable to produce a flat response. These techniques are developed in order to minimize the non-differentiable fitness function. Finally, the simulation results have been presented for 5th-, 7th- and 11th-order FIR differentiator using the \(L_1\)-method, PSO-\(L_1\) and BA-\(L_1\). The magnitude response of the designed differentiators is analyzed for different frequency bands on the basis of relative magnitude error computed with respect to the ideal response. All the reported techniques contribute toward superior results, when compared with the traditional gradient-based optimizations, such as the window method, minimax and least-squares approach. In addition, the \(L_1\)-method yields better results for higher-order designs. Furthermore, the proposed designs are tested on two input signals for their efficient response.

Keywords

Finite impulse response \(L_1\)-error criterion Digital differentiator Bat algorithm Particle swarm optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skolnik, M.I.: Introduction to Radar Systems. McGraw- Hill, New York (1980)Google Scholar
  2. 2.
    AL-Alaoui, M.A.: Novel FIR approximations of IIR differentiators with applications to image edge detection. In: Proceedings of the 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 11–14 Dec 2011, Beirut, Lebanon (2011).  https://doi.org/10.1109/ICECS.2011.6122335
  3. 3.
    Morgera, S.D.: Digital filtering and prediction for communications systems time synchronization. IEEE J. Ocean. Eng. 7(3), 110–119 (1982)CrossRefGoogle Scholar
  4. 4.
    Kumar, A.; Komaragiri, R.; Kumar, M.: From pacemaker to wearable: techniques for ECG detection systems. J. Med. Syst. 42(2), 34 (2018)CrossRefGoogle Scholar
  5. 5.
    Kumar, A.; Berwal, D.; Kumar, Y.: Design of High-performance ECG detector for implantable cardiac pacemaker systems using biorthogonal wavelet transform. Circuits Syst. Signal Process. (2018).  https://doi.org/10.1007/s00034-018-0754-3 Google Scholar
  6. 6.
    Laguna, P.; Thakor, N.V.; Caminal, P.; Jane, R.: Low-pass differentiator for biological signals with known spectra: application to ECG signal processing. IEEE Trans. Biomed. Eng. 37(4), 420–425 (1990)CrossRefGoogle Scholar
  7. 7.
    Kumar, M.; Rawat, T.K.: Fractional order digital differentiator design based on power function and least-squares. Int. J. Electron. 103(10), 1639–1653 (2016)CrossRefGoogle Scholar
  8. 8.
    Shaeen, K.; Elias, E.: Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks—a review. J. Signal Process. Syst. 81(2), 183–195 (2015)CrossRefGoogle Scholar
  9. 9.
    Kumar, M.; Rawat, T.K.: Optimal fractional delay-IIR filter design using cuckoo search algorithm. ISA Trans. 59, 39–54 (2015)CrossRefGoogle Scholar
  10. 10.
    Kumar, M.; Rawat, T.K.: Optimal design of FIR fractional order differentiator using cuckoo search algorithm. Expert Syst. Appl. 42, 3433–3449 (2015)CrossRefGoogle Scholar
  11. 11.
    Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)CrossRefGoogle Scholar
  12. 12.
    Bihan, J.L.: Novel class of digital integrators and differentiators. Electron. Lett. 29(11), 971–973 (1993)CrossRefGoogle Scholar
  13. 13.
    Al-Aloaui, M.A.: Novel IIR differentiator from the Simpson integration rule. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 41(2), 186–187 (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Al-Aloaui, M.A.: Class of digital integrators and differentiators. IET Signal Process. 5, 251–260 (2011)CrossRefGoogle Scholar
  15. 15.
    Gupta, M.; Jain, M.; Kumar, B.: Recursive wideband digital integrator and differentiator. Int. J. Circuit Theory Appl. 39, 775–782 (2011)CrossRefGoogle Scholar
  16. 16.
    Papamarkos, N.; Chamzas, C.: A new approach for the design of digital integrators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(9), 785–791 (1996)CrossRefGoogle Scholar
  17. 17.
    Ngo, N.Q.: A new approach for the design of wideband digital integrator and differentiator. IEEE Trans. Circuits Syst. II 53(9), 936–940 (2006)CrossRefGoogle Scholar
  18. 18.
    Karaboga, N.; Cetinkaya, B.: Design of digital FIR filters using differential evolution algorithm. Circuits Syst. Signal Process. 25(5), 649–660 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Boudjelaba, K.; Ros, F.; Chikouche, D.: Potential of particle swarm optimization and genetic algorithms for FIR filter design. Circuits Syst. Signal Process. (2014).  https://doi.org/10.1007/s00034-014-9800-y Google Scholar
  20. 20.
    Upadhyay, D.K.: Recursive wide band digital differentiators. IET Electron. Lett. 46(25), 1661–1662 (2010)CrossRefGoogle Scholar
  21. 21.
    Upadhyay, D.K.; Singh, R.K.: Recursive wide band digital differentiators and integrators. Electron. Lett. 47(11), 647–648 (2011)CrossRefGoogle Scholar
  22. 22.
    Jain, M.; Gupta, M.; Jain, N.: Linear phase second order recursive digital integrators and differentiators. Radio Eng. J. 21(2), 712–717 (2012)Google Scholar
  23. 23.
    Gupta, M.; Relan, B.; Yadav, R.; Aggarwal, V.: Wideband digital integrators and differentiators designed using particle swarm optimization. IET Signal Process. 8(6), 668–679 (2014)CrossRefGoogle Scholar
  24. 24.
    Chang, W.D.; Chang, D.M.: Design of a higher-order digital differentiator using a particle swarm optimization approach. Mech. Syst. Signal Process. 22(1), 233–247 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    AL-Alaoui, M.A., Baydoun, M.: Novel wide band digital differentiators and integrators using different optimization techniques. In: Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS), 11–12 July 2013, Iasi, Romania (2013).  https://doi.org/10.1109/ISSCS.2013.6651225
  26. 26.
    Rawat, T.K.: Digital Signal Processing, 1st edn. Oxford University Press, Oxford (2014)Google Scholar
  27. 27.
    Rice, J.R.: The Approximation of Functions, vol. I. Addison- Wesley, Boston (1964)zbMATHGoogle Scholar
  28. 28.
    Bloomfield, P.: Least Absolute Deviations: Theory, Applications, and Algorithms. Birkhuser, Boston (1983)zbMATHGoogle Scholar
  29. 29.
    Grossmann, L.D.; Eldar, Y.C.: An \(L_1\)-method for the design of linear-phase FIR digital filters. IEEE Trans. Signal Process. 55(11), 5253–5266 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Aggarwal, A.; Rawat, T.K.; Kumar, M.; Upadhyay, D.K.: Optimal design of FIR high pass filter based on \(L_1\) error approximation using real coded genetic algorithm. Eng. Sci. Technol. Int. J. 18(4), 594–602 (2015)CrossRefGoogle Scholar
  31. 31.
    Aggarwal, A.; Rawat, T.K.; Kumar, M.; Upadhyay, D.K.: Efficient design of digital FIR differentiator using \(L_1\)-method. RadioEngineering 25(2), 86–92 (2016)CrossRefGoogle Scholar
  32. 32.
    Aggarwal, A.; Kumar, M.; Rawat, T.K.: \(L_1\) error criterion based optimal FIR filters. In: Annual IEEE India Conference (INDICON) (2014)Google Scholar
  33. 33.
    Aggarwal, A.; Rawat, T.K.; Kumar, M.; Upadhyay, D.K.: An \(L_1\)-method: application to digital symmetric type-II FIR filter design. In: Berretti, S., Thampi, S.M., Srivastava, P.R. (eds.) Intelligent Systems Technologies and Applications, pp. 335–343. Springer, Berlin (2016)CrossRefGoogle Scholar
  34. 34.
    Aggarwal, A.; Kumar, M.; Rawat, T.K.; Upadhyay, D.K.: Design of optimal 2-D FIR differentiators with quadrantally symmetric properties using the \(L_1\)-method. In: International Conference on Signal Processing and Communication Systems, (ICSPCS’2016). (2016).  https://doi.org/10.1109/ICSPCS.2016.7843369
  35. 35.
    Aggarwal, A.; Kumar, M.; Rawat, T.K.; Upadhyay, D.K.: Optimal design of 2-D FIR digital differentiator using \(L_1\)-norm based cuckoo-search algorithm. Multidimens. Syst. Signal Process. 28(4), 1569–1587 (2017)CrossRefGoogle Scholar
  36. 36.
    Yarlagadda, R.; Bednar, J.B.; Watt, T.L.: Fast algorithms for \(l_p\) deconvolution. IEEE Trans. Acoust. Speech Signal Process. 33, 174–184 (1985)CrossRefGoogle Scholar
  37. 37.
    Kennedy, J.; Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)CrossRefGoogle Scholar
  38. 38.
    Yang, X.S.: A New Metaheuristic Bat-Inspired Algorithm, Nature Inspired Cooperative Strategies for Optimization, vol. 284, pp. 65–74. Springer, Berlin (2010)zbMATHGoogle Scholar
  39. 39.
    Zhang, J.W.; Wang, G.G.: Image matching using a bat algorithm with mutation. In: Du, Z.Y., Liu, B. (eds.) Applied Mechanics and Materials, vol. 203, no. 1, pp. 88–93. Trans Tech Publication, Switzerland (2012)Google Scholar
  40. 40.
    Kumar, M.; Aggarwal, A.; Rawat, T.K.: Bat algorithm: application to adaptive infinite impulse response system identification. Arab. J. Sci. Eng. 41(9), 3587–3604 (2016)CrossRefGoogle Scholar
  41. 41.
    Mishra, S.; Panda, M.: Bat algorithm for multilevel colour image segmentation using entropy-based thresholding. Arab. J. Sci. Eng. (2018).  https://doi.org/10.1007/s13369-017-3017-x Google Scholar
  42. 42.
    Nakamura, R.Y.M.; Pereira, L.A.M.; Costa, K.A.; Rodrigues, D.; Papa, J.P.; Yang, X.S.: BBA: A binary bat algorithm for feature selection. In: Proceedings of the 25th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 291–297. IEEE (2012).  https://doi.org/10.1109/SIBGRAPI.2012.47
  43. 43.
    Mishra, S.; Shaw, K.; Mishra, D.: A new meta-heuristic bat inspired classification approach for microarray data. Procedia Technol. 4, 802–806 (2012)CrossRefGoogle Scholar
  44. 44.
    Yang, X.S.; He, X.: Bat algorithm: literature review and applications. Int. J. Bio Inspired Comput. 5(3), 141–149 (2013)CrossRefGoogle Scholar
  45. 45.
    Yang, X.S.; Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)CrossRefGoogle Scholar
  46. 46.
    Aggarwal, A.; Rawat, T.K.; Upadhyay, D.K.: Optimal design of L 1-norm based IIR digital differentiators and integrators using the bat algorithm. IET Signal Process. 11(1), 26–35 (2017)CrossRefGoogle Scholar
  47. 47.
    Gandomi, A.H.; Yang, X.S.; Alavi, A.H.; Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBharati Vidyapeeths College of EngineeringNew DelhiIndia
  2. 2.Department of Electronics and Communication EngineeringBennett UniversityGreater NoidaIndia
  3. 3.Department of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyDwarkaIndia

Personalised recommendations