Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5999–6009 | Cite as

Whole Process Inhibition of a Composite Superabsorbent Polymer-Based Antioxidant on Coal Spontaneous Combustion

  • Yan Zhong
  • Shengqiang Yang
  • Xincheng Hu
  • Jiawen Cai
  • Zongqing Tang
  • Qin Xu
Research Article - Chemical Engineering
  • 43 Downloads

Abstract

To achieve multiple and highly effective inhibition of coal spontaneous combustion, a novel composite inhibitor was developed by mixing a superabsorbent polymer (SAP) hydrogel with a synergistic antioxidant. Temperature-programmed oxidation, differential scanning calorimetry, and electron spin resonance were used to examine the inhibitor-treated coal samples to investigate the slowing effect of the composite inhibitor by comparing the inhibitions of the SAP hydrogel, synergistic antioxidant, and composite inhibitor on coal oxidation. The SAP hydrogel physically suppresses coal oxidation during the low-temperature phase, while the synergistic antioxidant chemically inhibits the oxidation during the high-temperature stage. Nevertheless, the composite inhibitor provides stable physicochemical inhibition for coal oxidation throughout the oxidation process by the synergistic effect of physical and chemical inhibition; the composite inhibitor provides a better overall effect for suppressing coal spontaneous combustion by combining the inhibiting characteristics of the SAP hydrogel and synergistic antioxidant. This study combines physical and chemical inhibitions of coal oxidation and provides a new method to efficiently prevent coal spontaneous combustion.

Keywords

Coal spontaneous combustion Superabsorbent polymer hydrogel Synergistic antioxidant Composite inhibitor Inhibition mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stracher, G.B.; Taylor, T.P.: Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59, 7–17 (2004)CrossRefGoogle Scholar
  2. 2.
    Tang, Z.; Yang, S.; Zhai, C.; et al.: Coal pores and fracture development during CBM drainage: their promoting effects on the propensity for coal and gas outbursts. J. Nat. Gas Sci. Eng. 51, 9–17 (2018)CrossRefGoogle Scholar
  3. 3.
    Colaizzi, G.J.: Prevention, control and/or extinguishment of coal seam fires using cellular grout. Int. J. Coal Geol. 59, 75–81 (2004)CrossRefGoogle Scholar
  4. 4.
    Voigt, S.; Tetzlaff, A.; Zhang, J.; Künzer, C.; Zhukov, B.; Strunz, G.; et al.: Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in north china. Int. J. Coal Geol. 59, 121–136 (2004)CrossRefGoogle Scholar
  5. 5.
    Kuenzer, C.; Zhang, J.; Tetzlaff, A.; Dijk, P.V.; Voigt, S.; Mehl, H.; et al.: Uncontrolled coal fires and their environmental impacts: investigating two arid mining regions in North-Central China. Appl. Geogr. 27, 42–62 (2007)CrossRefGoogle Scholar
  6. 6.
    Finkelman, R.B.: Potential health impacts of burning coal beds and waste banks. Int. J. Coal Geol. 59, 19–24 (2004)CrossRefGoogle Scholar
  7. 7.
    Nolter, M.A.; Vice, D.H.: Looking back at the centralia coal fire: a synopsis of its present status. Int. J. Coal Geol. 59, 99–106 (2004)CrossRefGoogle Scholar
  8. 8.
    Sujant, W.; Zhang, D.K.: Investigation into the role of inherent inorganic matter and additives in low-temperature oxidation of a victorian brown coal. Combust. Sci. Technol. 152, 99–114 (2000)CrossRefGoogle Scholar
  9. 9.
    Slovák, V.; Taraba, B.: Urea and cacl 2, as inhibitors of coal low-temperature oxidation. J. Therm. Anal. Calorim. 110, 363–367 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhou, F.B.; Ren, W.X.; Wang, D.M.; Song, T.L.; Li, X.; Zhang, Y.L.: Application of three-phase foam to fight an extraordinarily serious coal mine fire. Int. J. Coal Geol. 67, 95–100 (2006)CrossRefGoogle Scholar
  11. 11.
    Watanabe, W.S.; Zhang, D.K.: The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal. Fuel Process. Technol. 74, 145–160 (2001)CrossRefGoogle Scholar
  12. 12.
    Qi, X.Y.; Wei, C.X.; Li, Q.Z.; Zhang, L.B.: Controlled-release inhibitor for preventing the spontaneous combustion of coal. Nat. Hazards 82, 1–11 (2016)Google Scholar
  13. 13.
    Wang, D.M.; Dou, G.L.; Zhong, X.X.; Xin, H.H.; Qin, B.T.: An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117, 218–223 (2014)CrossRefGoogle Scholar
  14. 14.
    Li, J.L.; Lu, W.; Xu, J.: Coal spontaneous combustion prevention and cure with chemical retarder as well as analysis on retarding mechanism. Coal Sci. Technol. 40, 50–53 (2012)Google Scholar
  15. 15.
    Wei, L.: A new theory of chemical method to prevent spontaneous combustion of coal. J. Coal Sci. Eng. 15, 220–224 (2009). (in Chinese)CrossRefGoogle Scholar
  16. 16.
    Buchholz, F.L.; Peppas, N.A.: Superabsorbent polymers: science and technology. ACS Symposium Series, p. 573 (1994)Google Scholar
  17. 17.
    Zohuriaan-Mehr, M.J.; Omidian, H.; Doroudiani, S.; Kabiri, K.: Advances in non-hygienic applications of superabsorbent hydrogel materials. J. Mater. Sci. 45, 5711–5735 (2010)CrossRefGoogle Scholar
  18. 18.
    Karadağ, E.; Saraydin, D.; Çaldiran, Y.; Güven, O.: Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym. Adv. Technol. 11, 59–68 (2000)CrossRefGoogle Scholar
  19. 19.
    Asako, Y.; Otaka, T.; Yamaguchi, Y.: Fire resistance characteristics of materials with polymer gels which absorb aqueous solution of calcium chloride. Numer. Heat Transf. A Appl. 45, 49–66 (2010)CrossRefGoogle Scholar
  20. 20.
    Limparyoon, N.; Seetapan, N.; Kiatkamjornwong, S.: Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nanocomposites with mica as fire retardants. Polym. Degrad. Stab. 96, 1054–1063 (2011)CrossRefGoogle Scholar
  21. 21.
    Pipiraite, P.P.; Bolotin, A.B.; Gorbunov, B.N.: Theoretical investigation of mechanism of antioxidant action of sterically hindered phenols. Theor. Exp. Chem. 27, 152–156 (1991)CrossRefGoogle Scholar
  22. 22.
    Beamish, B.; Mclellan, P.; Endara, H.; Turunc, U.; Raab, M.; Beamish, R.: Delaying spontaneous combustion of reactive coals through inhibition. Coal Oper. Conf. 39, 157–162 (2013)Google Scholar
  23. 23.
    Beamish, B.B.; Mclellan, P.; Turunc, U.; Raab, M.; Beamish, R.T.: Quantifying spontaneous combustion inhibition of reactive coals. 14th US/North American Mine Ventilation Symposium (2012)Google Scholar
  24. 24.
    Qin, B.T.; Dou, G.L.; Wang, Y.; Xin, H.H.; Ma, L.Y.; Wang, D.M.: A superabsorbent hydrogel-ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190, 129–135 (2017)CrossRefGoogle Scholar
  25. 25.
    Li, Z.H.; Kong, B.; Wei, A.Z.; Yang, Y.L.; Zhou, Y.B.; Zhang, L.Z.: Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res. Int. 23, 1–13 (2016)CrossRefGoogle Scholar
  26. 26.
    Uchida, S.; Murakami, T.; Iwamura, T.; et al.: Enhanced thermal conductivity in immiscible polyimide blend composites with needle-shaped ZnO particles. RSC Adv. 7, 15492–15499 (2017)CrossRefGoogle Scholar
  27. 27.
    Choi, S.H.; Kim, D.H.; Raghu, A.; et al.: Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci. B 51, 197–207 (2012)CrossRefGoogle Scholar
  28. 28.
    Reddy, K.R.; Lee, K.P.; Gopalan, A.I.: Self-assembly approach for the synthesis of electro-magnetic functionalized Fe\(_{3}\)O\(_{4}\) /polyaniline nanocomposites: Effect of dopant on the properties. Colloids Surf. Physicochem. Eng. Asp. 320, 49–56 (2008)CrossRefGoogle Scholar
  29. 29.
    Reddy, K.R.; Sin, B.C.; Ryu, K.S.; et al.: Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth. Met. 159, 595–603 (2009)CrossRefGoogle Scholar
  30. 30.
    Hassan, M.; Reddy, K.R.; Haque, E.; et al.: High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid Interface Sci. 410, 43–51 (2013)CrossRefGoogle Scholar
  31. 31.
    Reddy, K.R.; Lee, K.P.; Gopalan, A.I.: Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)CrossRefGoogle Scholar
  32. 32.
    Yu, R.L.; Kim, S.C.; Lee, H.I.; et al.: Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19, 66–71 (2011)CrossRefGoogle Scholar
  33. 33.
    Reddy, K.R.; Lee, K.P.; Gopalan, A.I.; et al.: Organosilane modified magnetite nanoparticles/poly(aniline-co-o /m -aminobenzenesulfonic acid) composites: synthesis and characterization. React. Funct. Polym. 67, 943–954 (2007)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y.P.; Lee, S.H.; Reddy, K.R.; et al.: Synthesis and characterization of core-shell SiO\(_{2 }\)nanoparticles/poly (3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)CrossRefGoogle Scholar
  35. 35.
    Reddy, K.R.; Nakata, K.; Ochiai, T.; et al.: Nanofibrous TiO\(_{2}\)-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J. Nanosci. Nanotechnol. 10, 7951–7957 (2010)CrossRefGoogle Scholar
  36. 36.
    Han, S.J.; Lee, H.I.; Han, M.J.; et al.: Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. B 53, 1193–1204 (2014)CrossRefGoogle Scholar
  37. 37.
    Lu, P.; Liao, G.; Sun, J.H.; Li, P.D.: Experimental research on index gas of the coal spontaneous at low-temperature stage. J. Loss Prev. Process Ind. 17, 243–247 (2004)CrossRefGoogle Scholar
  38. 38.
    Yuan, L.; Smith, A.C.: Experimental study on CO and CO\(_{2}\), emissions from spontaneous heating of coals at varying temperatures and O\(_{2}\), concentrations. J. Loss Prev. Process Ind. 26, 1321–1327 (2013)CrossRefGoogle Scholar
  39. 39.
    Ma, L.Y.; Wang, D.M.; Wang, Y.; Dou, G.L.; Xin, H.H.: Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal. Fuel Process. Technol. 157, 65–75 (2017)CrossRefGoogle Scholar
  40. 40.
    Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N.: Ictac kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)CrossRefGoogle Scholar
  41. 41.
    Segal, E.; Fatu, D.: Some variants of the freeman-carroll method. J. Therm. Anal. Calorim. 9, 65–69 (1976)CrossRefGoogle Scholar
  42. 42.
    Browna, M.E.; Maciejewskib, M.; Vyazovkinc, S.: Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim. Acta 355, 125–143 (2000)CrossRefGoogle Scholar
  43. 43.
    Rudnick, L.R.; Tueting, D.: Investigation of free radicals produced during coal liquefaction using ESR. Fuel 63, 153–157 (1984)CrossRefGoogle Scholar
  44. 44.
    Davies, M.J.: Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods 109, 21 (2016)CrossRefGoogle Scholar
  45. 45.
    Kościelniak-Ziemniak, M.; Pilawa, B.: Application of EPR spectroscopy for examination of free radical formation in thermally sterilized betamethasone, clobetasol, and dexamethasone. Appl. Magn. Reson. 42, 519–530 (2012)CrossRefGoogle Scholar
  46. 46.
    Li, Z.F.; Zhang, Y.L.; Jing, X.X.; Zhang, Y.L.; Chang, L.P.: Insight into the intrinsic reaction of brown coal oxidation at low temperature: differential scanning calorimetry study. Fuel Process. Technol. 147, 64–70 (2016)CrossRefGoogle Scholar
  47. 47.
    Ozbas, K.E.; Kök, M.V.; Hicyilmaz, C.: DSC study of the combustion properties of Turkish coals. J. Therm. Anal. Calorim. 71, 849–856 (2003)CrossRefGoogle Scholar
  48. 48.
    Pilawa, B.; Więckowski, A.B.; Trzebicka, B.: Numerical analysis of EPR spectra of coal, macerals and extraction products. Radiat. Phys. Chem. 45, 899–908 (1995)CrossRefGoogle Scholar
  49. 49.
    Zohuriaan-Mehr, M.J.; Kabiri, K.: Superabsorbent polymer materials: a review. Iran. Polym. J. 17, 451–477 (2008)Google Scholar
  50. 50.
    Schwetlick, K.; König, T.; Rüger, C.; Pionteck, J.; Habicher, W.D.: Chain-breaking antioxidant activity of phosphite esters. Polym. Degrad. Stab. 15, 97–108 (1986)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Safety EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.School of Architectural EngineeringAnhui University of TechnologyMaanshanChina
  3. 3.Key Laboratory of Gas and Fire Control for Coal MinesXuzhouChina

Personalised recommendations