Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1823–1831 | Cite as

Design and Simulation of MEMS Electrothermal Compliant Actuator-Based Analog-to-Digital Converter

  • P. Pandiyan
  • G. UmaEmail author
  • M. Umapathy
Research Article - Electrical Engineering


In this paper, an out-of-plane microelectrothermal compliant actuator-based 3-bit analog-to-digital (ADC) converter is designed which works analogous to an electronic flash-type ADC. The MEMS ADC is built using an array of eight individual electrothermal compliant vertical (ETCV) actuators of varying cold arm width to produce distinct digital output levels. A complete analytical modelling is performed on a single ETC vertical actuator, and a relation between the applied voltage and the out-of-plane deflection is derived. The digital output condition is obtained when the free end of the ETCV actuator contact pads comes into contact with the output contact pads. The proposed ADC is also designed and simulated using MEMS CAD tool CoventorWare, and its coupled electro-thermo-mechanical analysis is carried out to illustrate its performance. The device operates in the range of 0–9 V analog input voltage for a 3-bit sample with low power consumption.


Actuator Analog-to-digital converter Electrothermal compliant MEMS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walden, R.H.: Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17, 539–550 (1999)CrossRefGoogle Scholar
  2. 2.
    Lee, P.; Lee, S.H.; Kwon, S.W.; Hong, Y.T.; Lee S.S.: Flash type MEMS-based analog-to-digital converter of field emission. In: Proceedings of IEEE International Conference on Transducers 2009, Denver, CO, USA, pp. 1198–1201 (2009)Google Scholar
  3. 3.
    Proie, R.; Pulskamp, J.S,; Polcawich, R.G.; Ivanov, T.; Zaghloul, M.: Low-power 3-bit piezoelectric MEMS analog to digital converter. In: Proceedings of IEEE 24th International Conference on Micro Electro Mechanical System, Cancun, Mexico, pp. 1241–1244 (2011)Google Scholar
  4. 4.
    Sharma, A.; Ram, W.S.; Amarnath, C.: Mechanical logic devices and circuits. In: Proceedings of 14th National Conference on Machines and Mechanisms, NIT, Durgapur, India, pp. 235–239 (2009)Google Scholar
  5. 5.
    Yeh, W.F.; Wang, J.A.: Force domain analog-to-digital converter applied to microscale tensile test. Exp. Mech. 53, 795–806 (2013)CrossRefGoogle Scholar
  6. 6.
    Majid, A.J.: Electrostatic and electromagnetic fields actuators for MEMS AD/DA converters. Int. J. Eng. 2, 35–41 (2008)Google Scholar
  7. 7.
    Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H.; Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. (2017). Google Scholar
  8. 8.
    Pandiyan, P.; Uma, G.; Umapathy, M.: Design and simulation of MEMS-based digital-to-analog converters for in-plane actuation. Arab J. Sci. Eng. (2017). Google Scholar
  9. 9.
    Guckel, H.; Klein, J.; Christenson, T.; Skrobis, K.; Laudon, M.; Lovell, E.G.: Thermo-magnetic metal flexure actuators. In: Proceedings of IEEE Solid State Sensorand Actuator Workshop, New York, pp. 73–75 (1992)Google Scholar
  10. 10.
    Que, L.; Park, J.S.; Gianchandani, Y.B.: Bent-beam electrothermal actuators for high force application. In: Proceedings of 12th IEEE International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA pp. 31–36 (1999)Google Scholar
  11. 11.
    Deladi, S.; Krijnen, G.; Elwenspoek, M.C.: Parallel-beams/lever electrothermal out-of-plane actuator. Microsyst. Technol. 10, 393–399 (2004)CrossRefGoogle Scholar
  12. 12.
    Singh, J.; Teo, J.H.S.: Two axes scanning SOI MEMS micro mirror for endoscopic bioimaging. J. Micromec. Microeng. 18(02), 1–9 (2007)Google Scholar
  13. 13.
    Comtois, J.H.; Bright, V.M.: Applications for surface-micromachined polysilicon thermal actuators and arrays. Sens. Actuator A Phys. 58, 19–25 (1997)CrossRefGoogle Scholar
  14. 14.
    Fedder, G.K.; Howe, R.T.: Thermal assembly of polysilicon microstructures. In: Proceedings of IEEE Micro Electro Mechanical System Workshop, pp. 63–68 (1991)Google Scholar
  15. 15.
    Lin, L.; Chiao, M.: Electrothermal response of lineshape microstructures. Sens. Actuators A 55, 35–41 (1996)CrossRefGoogle Scholar
  16. 16.
    Huang, Qing-An; Lee, Neville Ka Shek: Analysis and design of polysilicon thermal flexure actuator. J. Micromech. Microeng. 9, 64–70 (1999)CrossRefGoogle Scholar
  17. 17.
    Varona, J.; Tecpoyotl-Torres, M.; Hamoui, A.A.: Polysilicon vertical actuator powered with waste heat. In: Proceedings of IEEE Conference on Custom Integrated Circuits Conference, San Jose, CA, pp. 519–522 (2008)Google Scholar
  18. 18.
    Yan, D.; Khajepour, A.; Mansour, R.: Design and modeling of a MEMS bidirectional vertical thermal actuator. J. Micromech. Microeng. 14, 841–850 (2004)CrossRefGoogle Scholar
  19. 19.
    Kennedy, J.B.; Madugula, M.K.S.: Elastic Analysis of Structures, vol. 9. Harper and Row, New York (1990). (ch. 7, 9)zbMATHGoogle Scholar
  20. 20.
    CoventorWare Analyzer Reference Standard Capabilities Manual, Version (2012)Google Scholar
  21. 21.
    Zhu, Y.; Corigliano, A.; Espinosa, H.D.: A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J. Micromech. Microeng. 16(2), 242–253 (2006)CrossRefGoogle Scholar
  22. 22.
    Krecinic, F.; Duc, T.Chu; Lau, G.K.; Sarro, P.M.: Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper. J. Micromech. Microeng. 18(06), 1–7 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringSri Ramakrishna Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Instrumentation and Control EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations