Skip to main content
Log in

Enhanced Iterative Back-Projection Based Super-Resolution Reconstruction of Digital Images

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Iterative back-projection (IBP) is a popular and straightforward approach applied successfully in the field of image super-resolution reconstruction (SRR). SRR using IBP (SRR–IBP) methods efficiently satisfies the basic reconstruction constraints. In spatial domain applications, it allows easy inclusion of data and is a computationally efficient method. However, inferior convergence rate, sensitivity to the initial choice of image, the presence of different degrees of ringing artifacts are some of the major disadvantages that limit the performance of SRR–IBP. To relieve these inherent limitations, an evolutionary edge preserving IBP (EEIBP) is proposed in this paper. The proposed work introduces an improved initial choice of the digital image by interpolating the low-resolution digital image via hybridizing the notion of uniform and non-uniform B-spline interpolation. Secondly, it incorporates a spatially adaptive back-projecting kernel (SABPK) and regularization constraints in the iterative process. The SABPK utilizes covariance-based adaptation to restore the lost high-frequency details and is regulated by a control parameter to make the reconstruction process robust. The regularization constraints use different low-level feature descriptors to track the information related to shape and salient visual properties of the digital image. Finally, the overall reconstruction error is minimized via GA, PSO and cuckoo search (CS) algorithms. Experimental results demonstrate the robustness and the effectiveness of the proposed EEIBP method to provide a high-resolution solution with improved visual perception and reduced artifacts. Moreover, EEIBP method optimized via CS algorithm enables a better quality of reconstruction as compared the other search algorithms (gradient, GA and PSO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, D.; Li, Z.; Xia, Y.; Chen, Z.: Remote sensing image super-resolution: challenges and approaches. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 196–200. IEEE (2015)

  2. Kouame, D.; Ploquin, M.: Super-resolution in medical imaging: an illustrative approach through ultrasound. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, ISBI’09, pp. 249–252. IEEE (2009)

  3. Okarma, K.; Teclaw, M.; Lech, P.: Application of super-resolution algorithms for the navigation of autonomous mobile robots. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 6, pp. 145–152. Springer, Berlin (2015)

    Google Scholar 

  4. Komatsu, T.; Aizawa, K.; Igarashi, T.; Saito, T.: Signal-processing based method for acquiring very high resolution images with multiple cameras and its theoretical analysis. IEE Proc. I (Commun. Speech Vis.) 140(1), 19–25 (1993)

    Article  Google Scholar 

  5. Park, S.C.; Park, M.K.; Kang, M.G.: Super resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  6. Nguyen, N.; Milanfar, P.: An efficient wavelet-based algorithm for image super resolution. In: Proceedings of the 2000 International Conference on Image Processing, 2000, vol. 2, pp. 351–354. IEEE (2000)

  7. Lertrattanapanich, S.; Bose, N.K.: High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Trans. Image Process. 11(12), 1427–1441 (2002)

    Article  MathSciNet  Google Scholar 

  8. Stark, H.; Oskoui, P.: High-resolution image recovery from image-plane arrays using convex projections. JOSA A 6(11), 1715–1726 (1989)

    Article  Google Scholar 

  9. Patti, A.J.; Altunbasak, Y.: Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Process. 10(1), 179–186 (2001)

    Article  Google Scholar 

  10. Irani, M.; Peleg, S.: Improving resolution by image registration. CVGIP Graph. Models Image Process. 53(3), 231–239 (1991)

    Article  Google Scholar 

  11. Dong, W.; Zhang, L.; Shi, G.; Wu, X.: Nonlocal back projection for adaptive image enlargement. In: 16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 349–352. IEEE (2009)

  12. Liang, X.; Gan, Z.: Improved non-local iterative back projection method for image super-resolution. In: Sixth International Conference on Image and Graphics (ICIG), 2011, pp. 176–181. IEEE (2011)

  13. Purkait, P.; Chanda, B.: Super resolution image reconstruction through Bregman iteration using morphologic regularization. IEEE Trans. Image Process. 21(9), 4029–4039 (2012)

    Article  MathSciNet  Google Scholar 

  14. Makwana, R.R.; Mehta, N.D.: Single image super resolution via iterative back projection based Canny edge detection and a Gabor filter prior. Int. J. Soft Comput. Eng. (IJSCE) 3(1), 2231–2307 (2013)

    Google Scholar 

  15. Nayak, R.; Monalisa, S.; Patra, D.; Spatial super resolution based image reconstruction using HIBP. In: 2013 Annual IEEE on India Conference (INDICON), pp. 1–6. IEEE (2013)

  16. Nayak, R.; Harshavardhan, S.; Patra, D.: Morphology based iterative back-projection for super-resolution reconstruction of image. In: 2014 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN), pp. 1–6. IEEE (2014)

  17. Ahrens, B.: Genetic algorithm optimization of super resolution parameters. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 2083–2088. ACM (2005)

  18. Man, K.-F.; Tang, K.-S.; Kwong, S.: Genetic algorithms: concepts and applications. IEEE Trans. Ind. Electron. 43(5), 519–534 (1996)

    Article  Google Scholar 

  19. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2010)

    Google Scholar 

  20. Yang, X.-S.; Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)

    MATH  Google Scholar 

  21. Yang, X.-S.; Deb, S.; Cuckoo search via levy fights. In: World Congress on Nature and Biologically Inspired Computing, 2009, NaBIC 2009, pp. 210–214. IEEE (2009)

  22. Elad, M.; Feuer, A.: Restoration of a single super resolution image from several blurred, noisy, and under sampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  23. Li, X.; Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10), 1521–1527 (2001)

    Article  Google Scholar 

  24. Chakraborty, D.; Chowdhary, V.; Dutta, D.; Sharma, J.: Classification of high spatial resolution image using multi circular local binary pattern and variance. Int. J. Electron. Commun. Comput. Eng. 4(6), 1648–1654 (2013)

    Google Scholar 

  25. Chakraborty, D.; Dutta, D.; Sharma, J.R.: Texture measurement through local pattern quantization for SAR image classification. J. Indian Soc. Remote Sens. 44(3), 471–477 (2016)

    Article  Google Scholar 

  26. Chakraborty, D.; Singh, S.; Dutta, D.: Segmentation and classification of high spatial resolution images based on holder exponents and variance. Geospat. Inf. Sci. 20(1), 39–45 (2017)

    Article  Google Scholar 

  27. Parker, J.A.; Kenyon, R.V.; Troxel, D.E.: Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2(1), 31–39 (1983)

    Article  Google Scholar 

  28. Hou, H.S.; Andrews, H.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–517 (1978)

    Article  Google Scholar 

  29. Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999)

    Article  Google Scholar 

  30. Mihalik, J.; Zavacky, J.; Kuba, I.: Spline interpolation of image. Radio Eng. 4(1), 221–230 (1995)

    Google Scholar 

  31. Thevenaz, P.; Blu, T.; Unser, M.: Interpolation revisited [medical images application]. IEEE Trans. Med. Imaging 19(7), 739–758 (2000)

    Article  Google Scholar 

  32. Nayak, R.; Patra, D.: Image interpolation using adaptive P-spline. In: 2015 Annual IEEE on India Conference (INDICON), pp. 1–6. IEEE (2015)

  33. Margolis, E.; Eldar, Y.C.: Interpolation with non-uniform B-splines. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004 (ICASSP’04), vol. 2, p. ii-577. IEEE (2004)

  34. Schwartz, W.R.; Guo, H.; Choi, J.; Davis, L.S.: Face identification using large feature sets. IEEE Trans. Image Process. 21(4), 2245–2255 (2012)

    Article  MathSciNet  Google Scholar 

  35. Ezhilmaran, D.; Joseph, P.R.B.: A study of feature extraction techniques and image enhancement algorithms for finger vein recognition. Int. J. PharmTech. Res. 8(8), 222–229 (2015)

    Google Scholar 

  36. Ou, Y.; Sotiras, A.; Paragios, N.; Davatzikos, C.: Dramms: deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 15(4), 622–639 (2011)

    Article  Google Scholar 

  37. Chen, L.; Lu, G.; Zhang, D.: Effects of different Gabor filters parameters on image retrieval by texture. In: Proceedings of the 10th International Multimedia Modelling Conference, 2004, pp. 273–278. IEEE (2004)

  38. Manjunath, B.S.; Ma, W.-Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  39. Nanni, L.; Lumini, A.; Brahnam, S.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012)

    Article  Google Scholar 

  40. Gou, J.; Wu, Z.; Wang, J.: An improved particle swarm optimization algorithm based on self-adapted comprehensive learning. Adv. Sci. Lett. 11(1), 668–675 (2012)

    Article  Google Scholar 

  41. Civicioglu, P.; Besdok, E.: A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 39(4), 315–346 (2013)

    Article  Google Scholar 

  42. Jones, K.O.: Comparison of genetic algorithm and particle swarm optimization. In: Proceedings of the International Conference on Computer Systems and Technologies, pp. 1–6 (2005)

  43. Gull, S.F.; Daniell, G.J.: Image reconstruction from incomplete and noisy data. Nature 272(20), 686–690 (1978)

    Article  Google Scholar 

  44. Wang, Z.; Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  46. Zhang, L.; Zhang, L.; Mou, X.; Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  47. Sheikh, H.R.; Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  48. Vandewalle, P.; Susstrunk, S.; Vetterli, M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP J. Appl. Signal Process. 2006, 233–233 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Patra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, R., Patra, D. Enhanced Iterative Back-Projection Based Super-Resolution Reconstruction of Digital Images. Arab J Sci Eng 43, 7521–7547 (2018). https://doi.org/10.1007/s13369-018-3150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3150-1

Keywords

Navigation