Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1833–1841 | Cite as

Spectral Efficiency Comparison of Asynchronous MC-CDMA, MC DS-CDMA and MT-CDMA with Carrier Frequency Offset

  • Junaid AhmedEmail author
Research Article - Electrical Engineering


Multicarrier code-division multiple access (MC-CDMA), multicarrier direct-sequence CDMA (MC DS-CDMA) and multitone CDMA (MT-CDMA) are three flavors of spread spectrum multicarrier communications. Multiple access interference, inter-carrier interference, self-interference and noise are the major factors that deteriorate their spectral efficiency. A novel joint analysis of spectral efficiency is presented for asynchronous MC-CDMA, MC DS-CDMA and MT-CDMA in a frequency-selective Rayleigh fading environment. This allows us to compare performance of the three schemes in indoor and outdoor environments in the presence of interferers, carrier frequency offset, multipath fading and noise.


Multicarrier code-division multiple access Spread spectrum communication OFDM Rayleigh channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakamura, T.; Nagata, S.; Benjebbour, A.; Kishiyama, Y.; Hai, T.; Xiaodong, S.; Ning, Y.; Nan, L.: Trends in small cell enhancements in LTE advanced. IEEE Commun. Mag. 51(2), 98–105 (2013)CrossRefGoogle Scholar
  2. 2.
    Jasbi, F.; So, D.K.C.: Hybrid overlay/underlay cognitive radio network with MC-CDMA. IEEE Trans. Veh. Technol. 65(4), 2038–2047 (2016)CrossRefGoogle Scholar
  3. 3.
    Rabie, K.M.; Alsusa, E.: MC-CDMA transmission with blanking nonlinearity for impulsive noise power-line communication channels. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015)Google Scholar
  4. 4.
    Rabie, K.M.; Alsusae, E.: On improving communication robustness in PLC systems for more reliable smart grid applications. IEEE Trans. Smart Grid 6(6), 2746–2756 (2015)CrossRefGoogle Scholar
  5. 5.
    Wang, H.; Yao, Y.D.; Wang, R.; Shen, L.: Coordinated jamming and communications in an MC-CDMA system. IEEE Trans. Aerosp. Electron. Syst. 51(4), 3151–3160 (2015)CrossRefGoogle Scholar
  6. 6.
    Chen, Y.-W.; Chi, Y.-C.; Wang, H.-Y.; Tsai, C.-T.; Weng, Z.-K.; Feng, K.-M.; Lin, G.-R.: Constructed MC-CDMA LR-PON with colorless laser diode and multicode interference cancellation DSP. J. Lightwave Technol. 35(13), 2646–2653, (2017).
  7. 7.
    Yee, N.; Linnartz, J.; Fettweis, G.: Multicarrier CDMA in indoor wireless radio networks. In: Proceedings of IEEE PIMRC, pp. 109–113 (1993)Google Scholar
  8. 8.
    DaSilva, V.; Sousa, E.: Performance of orthogonal CDMA codes for quasi-synchronous communication systems. In: Proceedings of IEEE ICUPC, vol. 2, pp. 995–999 (1993)Google Scholar
  9. 9.
    Vandendorpe, L.: Multitone direct sequence CDMA system in an indoor wireless environment. In: Proceedings of IEEE First Symposium of Communications and Vehicular Technology, pp. 4.1.1–4.1.8 (1993)Google Scholar
  10. 10.
    Li, M.; Liu, C.; Hanly, S.: Precoding for the sparsely spread MC-CDMA downlink with discrete-alphabet inputs. IEEE Transactions on Vehicular Technology PP(99), 1 (2016)Google Scholar
  11. 11.
    Sampaio, L.D.H.; Souza, R.C.e; Abro, T.: Game theoretic energy efficiency design in MC-CDMA cooperative networks. IEEE Sens. J. 14(9), 3065–3075 (2014)CrossRefGoogle Scholar
  12. 12.
    Banupriya, R.; Vijaya, N.; Susithra, G.; Anitha, S.: Performance enhancement of MC-CDMA system for high speed mobile users. In: 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 01, pp. 1–5 (2016)Google Scholar
  13. 13.
    Huang, W.J.; Hu, W.W.; Li, C.P.; Chen, J.C.: Novel metric-based PAPR reduction schemes for MC-CDMA systems. IEEE Trans. Veh. Technol. 64(9), 3982–3989 (2015)CrossRefGoogle Scholar
  14. 14.
    Liu, Z.; Guan, Y.L.; Chen, H.H.: Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes. IEEE Trans. Wireless Commun. 14(3), 1226–1236 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, S.H.; Li, C.P.: Novel MC-CDMA system using Fourier duals of sparse perfect Gaussian integer sequences. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6 (2016)Google Scholar
  16. 16.
    Jang, W.; Nguyen, L.; Lee, M.: MAI and ICI of asynchronous uplink MC-CDMA with frequency offset. IEEE Trans. Veh. Technol. 57(4), 2164–2179 (2008)CrossRefGoogle Scholar
  17. 17.
    Ahmed, J.; Hamdi, K.: Spectral efficiency degradation of multicarrier CDMA due to carrier frequency offset. In Proceedings of IEEE ICC, pp. 1 –5 (2011)Google Scholar
  18. 18.
    Thiagarajan, L.; Attallah, S.; Abed-Meraim, K.; Liang, Y.-C.; Fu, H.: Non-data-aided joint carrier frequency offset and channel estimator for uplink MC-CDMA systems. IEEE Trans. Signal Process. 56(9), 4398–4408 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ma, Y.; Tafazolli, R.: Estimation of carrier frequency offset for multicarrier CDMA uplink. IEEE Trans. Signal Process. 55(6), 2617–2627 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chien, F.-T.; Kuo, C.-C.: Blind recursive tracking of carrier frequency offset (CFO) vector in MC-CDMA systems. IEEE Trans. Wireless Commun. 6(4), 1246–1255 (2007)CrossRefGoogle Scholar
  21. 21.
    Tadjpour, L.; Tsai, S.-H.; Kuo, C.-C.J.: Simplified multiaccess interference reduction for MC-CDMA with carrier frequency offsets (CFO). IEEE Trans. Veh. Technol. PP(99), 1 (2010)Google Scholar
  22. 22.
    Kim, T.; Ko, K.; Kim, Y.; Hong, D.: Performance evaluation of uplink MC-CDMA systems with residual frequency offset. IEICE Trans. Commun. 89, 1455–1458 (2006)CrossRefGoogle Scholar
  23. 23.
    Tomba, L.; Krzymien, W.: Sensitivity of the MC-CDMA access scheme to carrier phase noise and frequency offset. IEEE Trans. Veh. Technol. 48(5), 1657–1665 (1999)CrossRefGoogle Scholar
  24. 24.
    Yang, L.-L.; Hanzo, L.: Performance of generalized multicarrier DS-CDMA over Nakagami-m fading channels. IEEE Trans. Commun. 50(6), 956–966 (2002)CrossRefGoogle Scholar
  25. 25.
    Shi, Q.; Latva-aho, M.: An exact error floor for downlink MC-CDMA in correlated Rayleigh fading channels. IEEE Commun. Lett. 6(5), 196–198 (2002)CrossRefGoogle Scholar
  26. 26.
    Hou, Z.; Dubey, V.: Exact analysis for downlink MC-CDMA in Rayleigh fading channels. IEEE Commun. Lett. 8(2), 90–92 (2004)CrossRefGoogle Scholar
  27. 27.
    Sorooshyari, S.; Daut, D.: Performance of multicarrier CDMA in the presence of correlated fading. IEEE Trans. Veh. Technol. 58(7), 3837–3843 (2009)CrossRefGoogle Scholar
  28. 28.
    Tulino, A.; Li, L.; Verdu, S.: Spectral efficiency of multicarrier CDMA. IEEE Trans. Inf. Theory 51(2), 479–505 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ahmed, J.; Hamdi, K.: Spectral efficiency of asynchronous MC-CDMA with frequency offset over correlated fading. IEEE Trans. Veh. Technol. 62(7), 3423–3429 (2013)CrossRefGoogle Scholar
  30. 30.
    Abeta, S.; Atarashi, H.; Sawahashi, M.; Adachi, F.: Coherent multicarrier/DS-CDMA and MC-CDMA for broadband packet wireless access. In: Proceedings of IEEE VTC, vol. 3, pp. 1918–1922 (2000)Google Scholar
  31. 31.
    Suwa, S.; Atarashi, H.; Sawahashi, M.: Performance comparison between MC/DS-CDMA and MC-CDMA for reverse link broadband packet wireless access. In: Proceedings of IEEE VTC, vol. 4, pp. 2076–2080 (2002)Google Scholar
  32. 32.
    Gui, X.; Ng, T.-S.: Performance of asynchronous orthogonal multicarrier CDMA system in frequency selective fading channel. IEEE Trans. Commun. 47(7), 1084–1091 (1999)CrossRefGoogle Scholar
  33. 33.
    Chen, J.-D.; Ueng, F.-B.; Chang, J.-C.; Su, H.: Performance analyses of OFDM-CDMA receivers in multipath fading channels. IEEE Trans. Veh. Technol. 58(9), 4805–4818 (2009)CrossRefGoogle Scholar
  34. 34.
    Smida, B.; Hanzo, L.; Affes, S.: Exact BER performance of asynchronous MC-DS-CDMA over fading channels. IEEE Trans. Wireless Commun. 9(4), 1249–1254 (2010)CrossRefGoogle Scholar
  35. 35.
    Chien, F.-T.; Hwang, C.-H.; Kuo, C.-C.: Performance analysis of multicarrier CDMA systems with frequency offsets and random spreading under optimum combining. IEEE Trans. Commun. 54(4), 737–747 (2006)CrossRefGoogle Scholar
  36. 36.
    Steendam, H.; Moeneclaey, M.: The effect of carrier frequency offsets on downlink and uplink MC-DS-CDMA. IEEE J. Sel. Areas Commun. 19(12), 2528–2536 (2001)CrossRefGoogle Scholar
  37. 37.
    Steendam, H.; Moeneclaey, M.: The effect of carrier phase jitter on MC-DS-CDMA. In: Proceedings of IEEE ICC, vol. 6, pp. 1881–1884 (2001)Google Scholar
  38. 38.
    Steendam, H.; Moeneclaey, M.: The effect of timing jitter on MC-DS-CDMA. IEEE Trans. Commun. 52(3), 467–472 (2004)CrossRefGoogle Scholar
  39. 39.
    Vandendorpe, L.: Multitone spread spectrum multiple access communications system in a multipath Rician fading channel. In: Proceedings of IEEE ICC, vol. 3 , pp. 1638–1642 (1994)Google Scholar
  40. 40.
    Hara, S.; Prasad, R.: Overview of multicarrier CDMA. IEEE Commun. Mag. 35(12), 126–133 (1997)CrossRefGoogle Scholar
  41. 41.
    Li, K.; Darwazeh, I.: System performance comparison of fast-OFDM with overlapping MC-DS-CDMA and MT-CDMA systems. In: Proceedings of IEEE ICICS, pp. 1–4 (2007)Google Scholar
  42. 42.
    Rahman, Q.; Sesay, A.: Performance analysis of MT-CDMA system with diversity combining. In: Proceedings of IEEE MILCOM, vol. 2, pp. 1360–1364 (2001)Google Scholar
  43. 43.
    Yang, L.-L.; Hanzo, L.: Performance of generalized multicarrier DS-CDMA over Nakagami-m fading channels. IEEE Trans. Commun. 50(6), 956–966 (2002)CrossRefGoogle Scholar
  44. 44.
    Jakes, W.C. (ed.): Microwave Mobile Communications. IEEE Press, New York (1974)Google Scholar
  45. 45.
    Hamdi, K.: Theoretical analysis of the orthogonality factor in WCDMA downlinks. IEEE Trans. Wireless Commun. 8(11), 5394–5399 (2009)CrossRefGoogle Scholar
  46. 46.
    Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)CrossRefzbMATHGoogle Scholar
  47. 47.
    Zhang, Z.; Zhang, W.; Tellambura, C.: Robust OFDMA uplink synchronization by exploiting the variance of carrier frequency offsets. IEEE Trans. Veh. Technol. 57(5), 3028–3039 (2008)CrossRefGoogle Scholar
  48. 48.
    Hamdi, K.: A useful lemma for capacity analysis of fading interference channels. IEEE Trans. Commun. 58(2), 411–416 (2010)CrossRefGoogle Scholar
  49. 49.
    Turin, G.L.: The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika 47, 199–201 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Tse, D.; Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations