Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1791–1808 | Cite as

An Efficient Graphical Method for Load-Flow Solution of Distribution Systems

  • Krishna MurariEmail author
  • Narayana Prasad Padhy
Research Article - Electrical Engineering
  • 234 Downloads

Abstract

This paper presents a new and computationally efficient load-flow algorithm for ac distribution systems using graphical search technique along with matrix algebra. The proposed algorithm is equally applicable to balanced, unbalanced and meshed distribution systems. In contrast with traditional load-flow methods, the developed technique does not require any LU decomposition or bus admittance matrix. The significant feature of the algorithm lies in the formulation of path impedance matrix and loads beyond branch matrix; once formulated, it will remain unaltered for the entire operation. The reconfiguration of these matrices takes place automatically in accordance with the change in input data. Moreover, by storing all the system data in array/matrix form it hoards enormous computer memory. Because of the aforementioned reasons, the developed technique is computationally potent when applied on large-sized distribution systems. The efficacy of the proposed methodology is tested on various standard test systems. It is evident from the test results that the proposed algorithm is robust and time efficient for any size of distribution network when compared with several other existing load-flow methods.

Keywords

Distribution systems Graph theory Load modeling Load flow Undirected graph 

List of symbols

m

Total number of branches

n

Total number of buses

b

Branch number (\(1,2,\ldots ,m\))

k

Node number (\(1,2,\ldots ,n\))

V(k)

Voltage at node number k

IL(k)

Load current at bus number k

[LB] matrix

Loads beyond branch matrix

[BB] matrix

Buses beyond branch matrix

[P] matrix

Path matrix

[PI] matrix

Path impedance matrix

Z(b)

Impedance of branch number [b]

E

Total number of extreme nodes in the distribution system

s

Total number of power-flow paths

S(k)

Complex power of load at bus k

P(k)

Real power of load at bus k

Q(k)

Reactive power of load at bus k

\(\varepsilon \)

Tolerance

DVMAX

Maximum voltage difference

i

Row number of a matrix

j

Column number of matrix

SD

System data matrix

SN

Sending end node

RN

Receiving end node

S(RN)

Complex power at RN node

CPLM

Constant power load model

CCLM

Constant current load model

CZLM

Constant impedance load model

ExpLM

Exponential load model

ComLM

Composite load model

I(b)

Current through branch number b

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iwamoto, S.; Tamura, Y.: A load flow calculation method for ill conditioned power system. IEEE Trans. Power Appar. Syst. 100(4), 1736–1743 (1981)CrossRefGoogle Scholar
  2. 2.
    Teng, J.H.; Chang, C.-Y.: A novel and fast three-phase load flow for unbalanced radial distribution systems. IEEE Trans. Power Syst. 17(4), 1238–1244 (2002)CrossRefGoogle Scholar
  3. 3.
    Losi, A.; Russo, M.: Object-oriented load flow for radial and weakly meshed distribution networks. IEEE Trans. Power Syst. 18(4), 1265–1274 (2003)CrossRefGoogle Scholar
  4. 4.
    Venkatesh, B.; Dukpa, A.; Chang, L.: An accurate voltage solution method for radial distribution systems. Can. J. Electr. Comput. Eng. 34(1/2), 69–74 (2009)CrossRefGoogle Scholar
  5. 5.
    Aravindhababu, P.; Ashokkumar, R.: A fast decoupled power flow for distribution system. Electr. Power Compon. Syst. 36(9), 932–940 (2008)CrossRefGoogle Scholar
  6. 6.
    Tortelli, O.L.; Lourenco, E.M.; Gracia, A.V.; Pal, B.C.: Fast decoupled power flow to emerging distribution systems via complex pu normalization. IEEE Trans. Power Syst. 30(3), 1351–1358 (2015)CrossRefGoogle Scholar
  7. 7.
    Ghosh, S.; Das, D.: Method for load flow solution of radial distribution networks. IEE Proc. (GTD) 46(6), 641–648 (1999)Google Scholar
  8. 8.
    Ju, Y.; Wu, W.; Sun, H.: Loop-analysis based continuation power flow algorithm for distribution networks. IET GTD 8(7), 1284–1292 (2014)Google Scholar
  9. 9.
    Alinjak, T.; Pavić, I.; Stojkov, M.: Improvement of backward/forward sweep power flow method by using modified breadth-first search strategy. IET GTD 11(1), 102–109 (2017)Google Scholar
  10. 10.
    ALHajiri, M.F.; EL-Hawary, M.E.: Exploiting the radial distribution structure in developing a fast and flexible radial power flow for unbalanced three phase networks. IEEE Trans. Power Deliv. 25(1), 378–389 (2010)CrossRefGoogle Scholar
  11. 11.
    Shakarami, M.R.; Beiranvand, H.; Beiranvand, A.; Sharifipour, E.: A recursive power flow method for radial distribution networks: analysis, solvability and convergence. Int. J. Electr. Power Energy Syst. 86, 71–80 (2017)CrossRefGoogle Scholar
  12. 12.
    Ghatak, U.; Mukherjee, V.: A fast and efficient load flow technique for unbalanced distribution system. Int. J. Electr. Power Energy Syst. 84, 168–181 (2017)CrossRefGoogle Scholar
  13. 13.
    Teng, J.H.: A direct approach for distribution system load flow solutions. IEEE Trans. Power Deliv. 18(3), 882–887 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Abul’Wafa, A.R.: A network-topology-based load flow for radial distribution networks with composite and exponential load. Electr. Power Syst. Res. 91, 37–43 (2012)CrossRefGoogle Scholar
  15. 15.
    Das, D.; Kothari, D.P.; Kalam, A.: Simple and efficient method for load flow solution of radial distribution networks. Int. J. Electr. Power Energy Syst. 17(5), 335–346 (1995)CrossRefGoogle Scholar
  16. 16.
    Muhtazaruddin, M.N.; Jamian, J.J.; Fujita, G.M.; Baharudin, A.; Wazir, M.W.; Mokhlis, H.: Distribution network loss minimization via simultaneous distributed generation coordination with network reconfiguration. Arab. J. Sci. Eng. 39, 4923–4933 (2014)CrossRefGoogle Scholar
  17. 17.
    Ranjan, R.; Das, D.: Simple and efficient computer algorithm to solve radial distribution networks. Electr. Power Compon. Syst. 31(1), 95–107 (2003)CrossRefGoogle Scholar
  18. 18.
    Cheng, C.S.; Shirmohammadi, D.: A three-phase power flow method for real time distribution system analysis. IEEE Trans. Power Syst. 10(2), 671–679 (1995)CrossRefGoogle Scholar
  19. 19.
    Mekhamer, S.F.; Soliman, S.A.; Moustafa, M.A.; El-Hawary, M.: Load flow solution of radial distribution feeders: a new contribution. Electr. Power Energy Syst. 24(9), 701–707 (2002)CrossRefGoogle Scholar
  20. 20.
    Kersting, W.H.: Radial distribution test feeders. IEEE Trans. Power Syst. 6(3), 975–985 (1991)CrossRefGoogle Scholar
  21. 21.
    Chen, T.H.; Chen, M.S.; Hwang, K.J.; Kotas, P.; Chebli, E.A.: Distribution system power flow analysis-a rigid approach. IEEE Trans. Power Deliv. 6(3), 1146–1152 (1991)CrossRefGoogle Scholar
  22. 22.
    Liu, J.; Salama, M.M.A.; Mansour, R.R.: An efficient power flow algorithm for distribution systems with polynomial load. Int. J. Electr. Eng. Educ. 39(4), 372–386 (2002)CrossRefGoogle Scholar
  23. 23.
    Shirmohammadi, D.; Hong, H.W.; Semlyen, A.; Luo, G.X.: A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst. 3(2), 753–762 (1988)CrossRefGoogle Scholar
  24. 24.
    Baran, M.E.; Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 4(2), 1401–1407 (1989)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations