Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1779–1790 | Cite as

A Three-phase Nine-level Fault Tolerant Asymmetrical Inverter

  • Santosh Kumar MaddugariEmail author
  • Vijay B Borghate
  • Raghavendra Reddy Karasani
  • Sidharth Sabyasachi
  • Hiralal M Suryawanshi
Research Article - Electrical Engineering


The reliability in inverters has gained a vast importance for their enhanced economic operation of the system. This paper proposes a three-phase reliable nine-level inverter with fault ride through capability. The proposed inverter synthesizes nine levels in the output with two asymmetrical voltage sources configured at a ratio of 1:3 under healthy operation. The inverter is analyzed for open circuit faults in switches. A reliability analysis is carried out for proposed inverter and compared with classical Cascaded-H Bridge. Combined control logic is implemented to control the inverter in accordance with the operating conditions. The circuit is operated with sinusoidal pulse width modulation under healthy condition, and it is made to operate with switching frequency optimal-based pulse width modulation (SFO-PWM) under fault cases, as it enhances fundamental DC value. The proposed inverter is simulated in MATLAB/SIMULINK, and the results are validated by an experimental setup.


Fault tolerant Multilevel inverter Reliability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meynard, T.A.; Foch, H.; Thomas, T.; Courault, J.; Jakob, R.; Nahrstaedt, M.: Multicell converters: basic concepts and industry applications. IEEE Trans. Industr. Electron. 49(5), 955–964 (2002)CrossRefGoogle Scholar
  2. 2.
    Nabae, A.; Takahashi, I.; Akagi, H.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)CrossRefGoogle Scholar
  3. 3.
    Hammond, P.W.: A new approach to enhance power quality for medium voltage AC drives. IEEE Trans. Ind. Appl. 33(1), 202–208 (1997)CrossRefGoogle Scholar
  4. 4.
    Malinowski, M.; Gopakumar, K.; Rodriguez, J.; Perez, M.A.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2197–2206 (2010)CrossRefGoogle Scholar
  5. 5.
    Rodriguez, J.; Lai, Jih-Sheng; Peng, Fang Zheng: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)CrossRefGoogle Scholar
  6. 6.
    Rodriguez, J.; Bernet, S.; Steimer, P.K.; Lizama, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2010)CrossRefGoogle Scholar
  7. 7.
    Babaei, E.; Alilu, S.; Laali, S.: A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans. Ind. Electron. 61(8), 3932–3939 (2014)CrossRefGoogle Scholar
  8. 8.
    Kangarlu, M.F.; Babaei, E.: Cross-switched multilevel inverter: an innovative topology. IET Power Electron. 6(4), 642–651 (2013)CrossRefGoogle Scholar
  9. 9.
    Karasani, R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.: A modified switched-diode topology for cascaded multilevel inverters. J. Power Electron. 16(5), 1706–1715 (2016)CrossRefGoogle Scholar
  10. 10.
    Gupta, K.K.; Jain, S.: Topology for multilevel inverters to attain maximum number of levels from given DC sources. IET Power Electron. 5(4), 435–446 (2012)CrossRefGoogle Scholar
  11. 11.
    Gupta, K.K.; Jain, S.: Comprehensive review of a recently proposed multilevel inverter. IET Power Electron. 7(3), 467–479 (2014)CrossRefGoogle Scholar
  12. 12.
    Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.; Sabyasachi, S.: A three-phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Trans. Power Electron. 32(2), 1070–1087 (2017)CrossRefGoogle Scholar
  13. 13.
    Wei, S.; Wu, B.; Li, F.; Sun, X.: Control method for cascaded H-bridge multilevel inverter with faulty power cells. In: Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC, Miami Beach, FL, USA, pp. 261–267 (2003)Google Scholar
  14. 14.
    Choi, U.M.; Lee, J.S.; Blaabjerg, F.; Lee, K.B.: Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter. IEEE Trans. Power Electron. 31(10), 7234–7247 (2016)Google Scholar
  15. 15.
    Ahmed, I.; Borghate, V.B.: Simplified space vector modulation technique for seven-level cascaded H-bridge inverter. IET Power Electron. 7(3), 604–613 (2014)CrossRefGoogle Scholar
  16. 16.
    Ahmed, I.; Borghate, V.B.; Matsa, A.; Meshram, P.M.; Suryawanshi, H.M.; Chaudhari, M.A.: Simplified space vector modulation techniques for multilevel inverters. IEEE Trans. Power Electron. 31(12), 8483–8499 (2016)CrossRefGoogle Scholar
  17. 17.
    Kim. S.M.; Lee. J.S.; Lee. K.B.: Fault-tolerant strategy using neutral-shift method for cascaded multilevel inverters based on level-shifted PWM. In: 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), pp. 1327–1332 (2015)Google Scholar
  18. 18.
    Kim, S.M.; Lee, J.S.; Lee, K.B.: A modified level-shifted PWM strategy for fault-tolerant cascaded multilevel inverters with improved power distribution. IEEE Trans. Ind. Electron. 63(11), 7264–7274 (2016)CrossRefGoogle Scholar
  19. 19.
    Chen, A.; Hu, L.; Chen, L.; Deng, Y.; He, X.: A multilevel converter topology with fault-tolerant ability. IEEE Trans. Power Electron. 20(2), 405–415 (2005)CrossRefGoogle Scholar
  20. 20.
    Rodriguez, J.; Hammond, P.W.; Pontt, J.; Musalem, R.; Lezana, P.; Escobar, M.J.: Operation of a medium-voltage drive under faulty conditions. IEEE Trans. Ind. Electron. 52(4), 1080–1085 (2005)CrossRefGoogle Scholar
  21. 21.
    Parker, M.A.; Ran, L.; Finney, S.J.: Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing. IEEE Trans. Ind. Electron. 60(2), 509–522 (2013)CrossRefGoogle Scholar
  22. 22.
    Cordeiro. A.; Silva. J.F.; Pinto. S.F.; Santana. J.E.: Fault-tolerant design for a three-level neutral-point-clamped multilevel inverter topology. In: IEEE International Conference on Computer as a Tool (EUROCON), Lisbon, pp. 1–4 (2011)Google Scholar
  23. 23.
    Madhukar, R.A.; Sivakumar, k: A fault-tolerant single-phase five-level inverter for grid-independent PV systems. IEEE Trans. Ind. Electron. 62(12), 7569–7577 (2015)CrossRefGoogle Scholar
  24. 24.
    Chitra, A.; Himavathi, S.: Reduced switch multilevel inverter for performance enhancement of induction motor drive with intelligent rotor resistance estimator. IET Power Electron. 8(12), 2444–2453 (2015)CrossRefGoogle Scholar
  25. 25.
    Chellammal. N.; Abirami. R.; Mohana, T.; Dash, S.S.: Switching frequency optimal PWM based three phase hybrid multilevel inverter. In: International Conference on Design and Manufacturing (IConDM2013), Chennai, India, pp. 302–311 (2013)Google Scholar
  26. 26.
    Steinke, J.K.: ’Switching frequency optimal PWM control of a three-level inverter. IEEE Trans. Power Electron. 7(3), 487–496 (1992)CrossRefGoogle Scholar
  27. 27.
    Alavi, O.; Viki, A.H.; Shamlou, S.: A comparative reliability study of three fundamental multilevel inverters using two different approaches. J Electron MDPI 5, 18 (2016)Google Scholar
  28. 28.
    General specifications of Semiconductor Devices. MIL-S-19500 (1994)Google Scholar
  29. 29.
    Haji-Esmaeili, M.M.; Naseri, M.; Khoun-Jahan, H.; Abapour, M.: Fault-tolerant structure for cascaded H-bridge multilevel inverter and reliability evaluation. IET Power Electron. 10(1), 59–70 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.Department of Electrical and Electronics EngineeringSagi RamaKrishnam Raju Engineering CollegeBhimavaramIndia
  3. 3.Department of Electrical EngineeringSreenidhi Institute of Science and TechnologyHyderabadIndia

Personalised recommendations