Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5949–5955 | Cite as

A Theoretical Mechanism Study on the Ethylenediamine Grafting on Graphene Oxides for \(\hbox {CO}_{2}\) Capture

  • Zhengcheng Wen
  • Weiyin Chen
  • Yuan Li
  • Jiangrong Xu
Research Article - Chemical Engineering
  • 149 Downloads

Abstract

The mechanism of ethylenediamine (EDA) grafting on graphene oxides (GO) for \(\hbox {CO}_{2}\) capture is investigated in detail by Quantum chemical calculation. Theoretical results show that, for epoxy on GO, EDA can be grafted via attacking activated C atoms which are adjacent to epoxy, while for carboxyl, EDA can be grafted via attacking C atom of carboxyl directly, and the grafting reaction can be catalyzed by \(\hbox {H}_{2}\hbox {O}\) and EDA. The activation energy of EDA grafting on carboxyl (23.2 kcal/mol) is lower than that on epoxy (28.6 kcal/mol), which indicates that carboxyl can be grafted more easily. Moreover, the activation energy of EDA de-grafting on carboxyl (50.7 kcal/mol) is much higher than that on epoxy (19.8 kcal/mol), which indicates that the thermal stability of EDA-carboxyl-grafted GO is much better. This illuminates that carboxyl can be grafted more effectively. The EDA grafting ability of oxygen functional groups on GO is that: carboxyl > epoxy > hydroxyl. The stronger the oxidizing ability of functional groups, the stronger the ability of amine grafting to functional groups.

Keywords

GO Amine EDA \(\hbox {CO}_{2}\) capture Quantum chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2018_3087_MOESM1_ESM.com (13 kb)
Supplementary material 1 (com 13 KB)
13369_2018_3087_MOESM2_ESM.com (14 kb)
Supplementary material 2 (com 13 KB)
13369_2018_3087_MOESM3_ESM.com (11 kb)
Supplementary material 3 (com 10 KB)
13369_2018_3087_MOESM5_ESM.com (12 kb)
Supplementary material 4 (com 12 KB)
13369_2018_3087_MOESM6_ESM.com (2 kb)
Supplementary material 5 (com 2 KB)
13369_2018_3087_MOESM7_ESM.com (9 kb)
Supplementary material 6 (com 9 KB)
13369_2018_3087_MOESM8_ESM.com (5 kb)
Supplementary material 7 (com 5 KB)
13369_2018_3087_MOESM9_ESM.com (12 kb)
Supplementary material 8 (com 11 KB)
13369_2018_3087_MOESM10_ESM.com (11 kb)
Supplementary material 9 (com 10 KB)
13369_2018_3087_MOESM11_ESM.com (11 kb)
Supplementary material 10 (com 10 KB)
13369_2018_3087_MOESM12_ESM.com (11 kb)
Supplementary material 11 (com 10 KB)
13369_2018_3087_MOESM13_ESM.com (11 kb)
Supplementary material 12 (com 10 KB)
13369_2018_3087_MOESM14_ESM.com (11 kb)
Supplementary material 13 (com 10 KB)
13369_2018_3087_MOESM15_ESM.com (11 kb)
Supplementary material 14 (com 10 KB)
13369_2018_3087_MOESM16_ESM.com (11 kb)
Supplementary material 15 (com 10 KB)

References

  1. 1.
    Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.: Post-combustion \(\text{ CO }_{2}\) capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011)CrossRefGoogle Scholar
  2. 2.
    El Hadri, N.; Quang, D.V.; Goetheer, E.L.V.: Aqueous amine solution characterization for post-combustion \(\text{ CO }_{2}\) capture process. Appl. Energy 185, 1433–1449 (2017)CrossRefGoogle Scholar
  3. 3.
    Goto, K.; Yogo, K.; Higashii, T.: A review of efficiency penalty in a coal-fired power plant with post-combustion \(\text{ CO }_{2}\) capture. Appl. Energy 111, 710–720 (2013)CrossRefGoogle Scholar
  4. 4.
    Sanz-Pérez, E.S.; Dantas, T.C.M.; Arencibia, A.: Reuse and recycling of amine-functionalized silica materials for \(\text{ CO }_{2}\) adsorption. Chem. Eng. J. 308(15), 1021–1033 (2017)CrossRefGoogle Scholar
  5. 5.
    Loganathan, S.; Ghoshal, A.K.: Amine tethered pore-expanded MCM-41: a promising adsorbent for \(\text{ CO }_{2}\) capture. Chem. Eng. J. 308(15), 827–839 (2017)CrossRefGoogle Scholar
  6. 6.
    Bhagiyalakshmi, M.; Yun, L.J.; Anuradha, R.; Jang, H.T.: Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to \(\text{ CO }_{2}\) chemisorption. J. Porous Mater. 17, 475–484 (2010)CrossRefGoogle Scholar
  7. 7.
    Yang, S.T.; Kim, J.Y.; Kim, J.; et al.: \(\text{ CO }_{2}\) capture over amine-functionalized MCM-22, MCM-36 and ITQ-2. Fuel 97, 435–442 (2012)CrossRefGoogle Scholar
  8. 8.
    Watabe, T.; Yogo, K.: Isotherms and isosteric heats of adsorption for \(\text{ CO }_{2}\) in amine-functionalized mesoporous silicas. Sep. Purif. Technol. 120, 20–23 (2013)CrossRefGoogle Scholar
  9. 9.
    Kim, J.Y.; Kim, J.; Yang, S.T.: Mesoporous SAPO-34 with amine-grafting for \(\text{ CO }_{2}\) capture. Fuel 108, 515–520 (2013)CrossRefGoogle Scholar
  10. 10.
    Srivastava, R.; Srinivas, D.; Ratnasamy, P.: Sites for \(\text{ CO }_{2}\) activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts. Microporous Mesoporous Mater. 90, 314–326 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, X.; Chen, L.; Guo, Q.: Development of hybrid amine-functionalized MCM-41 sorbents for \(\text{ CO }_{2}\) capture. Chem. Eng. J. 160, 573–581 (2015)CrossRefGoogle Scholar
  12. 12.
    Linneen, N.N.; Pfeffer, R.; Lin, Y.S.: \(\text{ CO }_{2}\) adsorption performance for amine grafted particulate silica aerogels. Chem. Eng. J. 254, 190–197 (2014)CrossRefGoogle Scholar
  13. 13.
    Ko, Y.G.; Lee, H.J.; Oh, H.C.: Amines immobilized double-walled silica nanotubes for CO2 capture. J. Hazard. Mater. 250–251, 53–60 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y.; Murali, S.; Cai, W.; et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)CrossRefGoogle Scholar
  15. 15.
    Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S.: The Chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRefGoogle Scholar
  16. 16.
    Shanmugharaj, A.M.; Yoon, J.H.; Yang, W.J.; Ryu, S.H.: Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J. Colloid Interface Sci. 401, 148–154 (2013)CrossRefGoogle Scholar
  17. 17.
    Sablok, K.; Bhalla, V.; Sharma, P.; Kaushal, R.; Chaudhary, S.; Suri, C.R.: Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene. J. Hazard. Mater. 248–249, 322–328 (2013)CrossRefGoogle Scholar
  18. 18.
    Shen, J.; Liu, G.; Huang, K.; Jin, W.; Lee, K.R.; Xu, N.: Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient \(\text{ CO }_{2}\) capture. Angew. Chem. Int. Ed. 54, 578–582 (2015)Google Scholar
  19. 19.
    Xin, Q.; Li, Z.; Li, C.: Enhancing the \(\text{ CO }_{2}\) separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J. Mater. Chem. A 3, 6629–6641 (2015)CrossRefGoogle Scholar
  20. 20.
    Quan, S.; Li, S.W.; Xiao, Y.C.; Shao, L.: \(\text{ CO }_{2}\)-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable \(\text{ CO }_{2}\) capture. Int. J. Greenh. Gas Control 56, 22–29 (2017)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y.; Dinga, H.; Zhong, Q.: Preparation and characterization of aminated graphite oxide for \(\text{ CO }_{2}\) capture. Appl. Surf. Sci. 258, 4301–4307 (2012)CrossRefGoogle Scholar
  22. 22.
    Kim, M.C.; Hwang, G.S.; Ruoff, R.S.: Ruoff Epoxide reduction with hydrazine on graphene: a first principles study. J. Chem. Phys. 131, 064704l (2009)CrossRefGoogle Scholar
  23. 23.
    Al-Aqtash, N.; Vasiliev, I.: Ab initio study of carboxylated graphene. J. Phys. Chem. C 113, 12970–12975 (2009)CrossRefGoogle Scholar
  24. 24.
    Lazar, P.; Karlicky, F.; Jurecka, P.; et al.: Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6327–6377 (2013)CrossRefGoogle Scholar
  25. 25.
    Gholizadeh, R.; Yu, Y.X.: N2O + CO reaction over Si- and Se-doped graphenes: an ab initio DFT study. Appl. Surf. Sci. 357, 1187–1195 (2015)CrossRefGoogle Scholar
  26. 26.
    Frisch, M.J.; Trucks, G.W.; Pople, J.A.; et al.: Gaussian 09. Gaussian, Inc, Pittsburgh (2009)Google Scholar
  27. 27.
    Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  28. 28.
    Becke, A.D.: Density functional thermochemistry III. The role of exact exchange correlation functions. J. Chem. Phys. 98(7), 5648–5652 (1993)Google Scholar
  29. 29.
    Gauss, J.; Cremer, C.: Analytical evaluation of energy gradients in quadratic configuration interaction theory. Chem. Phys. Lett. 150(3–4), 280–286 (1988)CrossRefGoogle Scholar
  30. 30.
    Sydlik, S.A.; Swager, T.M.: Functional graphenic materials via a Jonhson–Claisen rearrangement. Adv. Funct. Mater. 23, 1873–1882 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Zhengcheng Wen
    • 1
  • Weiyin Chen
    • 2
  • Yuan Li
    • 1
  • Jiangrong Xu
    • 1
  1. 1.College of ScienceHangzhou Dianzi UniversityHangzhouChina
  2. 2.Department of Chemical EngineeringUniversity of MississippiOxfordUSA

Personalised recommendations