A Novel Heaving Ocean Wave Energy Harvester with a Frequency Tuning Capability

  • N. V. Viet
  • A. Carpinteri
  • Q. Wang
Research Article - Mechanical Engineering


This study introduces a novel wave energy harvester (WEH) with frequency conversion capability to convert the ocean wave energy to usable electricity based on the piezoelectric effect. The presented WEH is with characteristics of space saving and minimized component quantities and is made of a cylindrical case reciprocally moving with respect to the fixed core shaft attached to identical magnetic bars. The cylindrical case contains four magnetic bar-mass-spring-lever-piezoelectric systems arranged symmetrically each other to the fixed shaft. By this smart design, the WEH is capable of converting the low frequency of ocean waves to a higher excitation frequency of motions on the piezoelectric transducer to harness higher electric power and reduce electrical leakage. A mathematical model of the WEH considering the wave–structure interaction is developed to evaluate the effectiveness of the converter. The simulation results reveal that the occurrence of resonance can lead to an outstanding power output via adjusting the distance between two adjacent magnetic bars. The power output is realized up to 750 W with the converter height and diameter, ocean wave height, and wave period being 1 m, 1 m, 1.5 m and 8 s, respectively.


Wave energy converter Piezoelectric technology Heaving harvester Ocean wave energy Frequency conversion Wave–structure interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    Khaligh, A.; Onar, O.C.: Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems (Energy, Power Electronics, and Machines), p. 1. Hardcover, Boca Raton (2009)Google Scholar
  2. 2.
    Falnes, J.: A review of wave-energy extraction. Mar. Struct. 20, 185–201 (2007)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y.L.; Lin, Z.: Advances in technology of ocean wave energy converters using piezoelectric materials. J. Hydroelectr. Eng. 5, 324–331 (2011)Google Scholar
  4. 4.
    Anton, S.R.; Sodano, H.A.: A review of power harvesting using piezoelectric materials 2003–2006. Smart. Mater. Struct. 16, 21–27 (2007)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Sravanthi, C; James, M.C.: A Survey of Energy Harvesting Sources for Embedded Systems. IEEE (2008)Google Scholar
  7. 7.
    Williams, C.B.; Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sens. Actuators A 52, 8–11 (1996)CrossRefGoogle Scholar
  8. 8.
    Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 165–182 (2007)Google Scholar
  9. 9.
  10. 10.
    Gu, L.; Livermore, C.: Passive self-tuning energy harvester for extracting energy from rotational motion. Appl. Phys. Lett. 97, 04–09 (2016)Google Scholar
  11. 11.
    Viet, N.V.; Wu, N.; Wang, Q.A.: review on energy harvesting from ocean waves by piezoelectric technology. J. Mod. Mech. Mater. 4, 161–171 (2017)Google Scholar
  12. 12.
    Murray, R.; Rastegar, J.: Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys. Act. Passive Smart Struct. Integr. Syst. SPIE 7288, 1117–1129 (2009)Google Scholar
  13. 13.
    Miller, L.M; Wright, P.K; Ho, C.C; Evans, J.W; Shafer, P.C; Ramesh, R.: Integration of a low frequency, tunable MEMS piezoelectric energy harvester and a thick film micro capacitor as a power supply system for wireless sensor nodes in IEEE, ECCE, 27–34 (2009)Google Scholar
  14. 14.
    Zhou, S.; Cao, J.; Erturk, A.; Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102, 01–05 (2013)Google Scholar
  15. 15.
    Erturk, A.; Hoffmann, J.; Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 02–06 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhou, S.; Cao, J.; Inman, D.J.; Liu, S.; Wang, W.; Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106, 01–06 (2015)Google Scholar
  17. 17.
    Xie, X.D.; Wang, Q.; Wu, N.: A ring piezoelectric energy harvester excited by magnetic forces. Int. J. Eng. Sci. 77, 71–78 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Viet, N.V.; Al-Qutayri, M.; Liew, K.M.; Wang, Q.: An octo-generator for energy harvesting based on the piezoelectric effect. Appl. Ocean Res. 64, 128–134 (2017)CrossRefGoogle Scholar
  19. 19.
    Viet, N.V.; Wang, Q.; Carpinteri, A.: Development of an ocean wave energy harvester with a built-in frequency conversion function. Int. J. Energy. Res. 42, 684–695 (2017)CrossRefGoogle Scholar
  20. 20.
    Wu, N; Wang, Q; Xie, X.: Ocean wave energy harvesting with a piezoelectric coupled buoy. US Patent 9,726,143, 08/August (2017)Google Scholar
  21. 21.
    McCormick, M.: Ocean Engineering Mechanics With Applications. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  22. 22.
    McCormick, M.: Ocean Wave Energy Conversion. Dover Publications, Mineola, NY (2007)Google Scholar
  23. 23.
    Rafael, E.V.; Carl, D.C.; Julio, C.C.: Analysis of a planar tensegrity mechanism for ocean wave energy harvesting. J. Mech. Robot. 6, 31015–31021 (2014)CrossRefGoogle Scholar
  24. 24.
    Kristiansen, E; Egeland, O.: Frequency dependent added mass in models for controller design for wave motion ship damping. MCMC’03, Girona, Spain 17–19 (2003)Google Scholar
  25. 25.
    Taghipour, R.; Perez, T.; Moan, T.: Hybrid frequency-time domain models for dynamic response analysis of marine structures. Ocean Eng. 35(7), 685–705 (2008)CrossRefGoogle Scholar
  26. 26.
    Abramowitz, M.; Stegun, I.A.: Handbook of Mathematical Functions, Dover Publications. New York. Originally published by the U. S. Printing Office, Washington, DC (1965)Google Scholar
  27. 27.
  28. 28.
    Spooner, E.; Grimwade, J.: \(\text{Snapper}^{{\rm TM}}\): an efficient and compact direct electric power take-off device for wave energy converters. In: Proceedings of the World Maritime Technology Conference, 6–10 March, London, UK (2006)Google Scholar
  29. 29.
    John, S.W.M; Adams, D.: Gyroscopic roll stabilizer for boats. US10454905, 04/June (2003)Google Scholar
  30. 30.
  31. 31. Accessed 16 Mar 2018
  32. 32.
  33. 33.
    Al-Ashtari, W.; Hunstig, M.; Hemsel, T.; Sextro, W.: Frequency tuning of piezoelectric energy harvesters by magnetic force. Smart Mater. Struct. 21, 19–24 (2012)CrossRefGoogle Scholar
  34. 34.
    Viet, N.V.; Xie, X.D.; Liew, K.M.; Banthia, N.; Wang, Q.: Energy harvesting from ocean waves by a floating energy harvester. Energy 112, 1219–1226 (2016)CrossRefGoogle Scholar
  35. 35.
    Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York (1979)Google Scholar
  36. 36.
    Woodhouse, J.: Linear damping models for structural vibration. J. Sound. Vib. 215(3), 547–69 (1998)CrossRefzbMATHGoogle Scholar
  37. 37.
    Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C.: Energy harvesting from human and machine motion for wireless electronic devices. IEEE 96, 1455–1458 (2008)CrossRefGoogle Scholar
  38. 38.
    Xie, X.D.; Wang, Q.: Energy harvesting from a vehicle suspension system. Energy 86, 385–92 (2015)CrossRefGoogle Scholar
  39. 39.
    Ravi, T.T.; Krishna, C.T.: Computation of natural frequencies of multi degree of freedom system. Int. J. Eng. Res. Technol. 10, 2278–2281 (2012)Google Scholar
  40. 40.
    Wu, N.; Wang, Q.; Xie, X.D.: Wind energy harvesting with a piezoelectric harvester. Smart Mater. Struct. 22, 23–28 (2013)Google Scholar
  41. 41.
    Tao, J.X.; Viet, N.V.; Carpinteri, A.; Wang, Q.: Energy harvesting from wind by a piezoelectric harvester. Eng. Struct. 133, 74–80 (2017)CrossRefGoogle Scholar
  42. 42.

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of MechanicsKhalifa University of Science and TechnologyAbu DhabiUAE
  2. 2.Department of Structural, Geotechnical and Building EngineeringPolitecnico di TorinoTurinItaly
  3. 3.Department of Mechanics and Aerospace EngineeringSouthern University of Science and TechnologyShenzhenPeople’s Republic of China

Personalised recommendations