Advertisement

New Piecewise Estimator Observer for Continuous Time Linear Systems with Sampled and Delayed Measurements

  • Abdeldafia Mohammed
  • Haoping Wang
  • Yang Tian
Research Article - Systems Engineering
  • 4 Downloads

Abstract

This paper addresses the problem of sampled and delayed output measurements for continuous time linear systems. A novel observer design so-called piecewise estimator observer (PEO) is proposed to reconstruct the continuous system state without time delay. The PEO is composed of the current estimator and the piecewise continuous hybrid system. The main advantage of the proposed technique is further simple analysis and design, as well as less conservative to system parameters variation. Also it considered the sampling period in the observer design. Furthermore, at every sampling instant, the initial condition of the piecewise continuous hybrid system can be re-initialized which prevents the observation accumulation errors and achieves accurate results. In addition, comprehensive stability analysis of the observer is performed based on the linear matrix inequality. Moreover, the performance of the piecewise estimator observer is assessed with the delayed Luenberger observer and Kalman filter observer via a numerical example, and the simulation results are presented.

Keywords

Sampled and delayed measurements Piecewise continuous hybrid systems Current estimator State estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (61773212, 61304077), by International Science and Technology Cooperation Program of China (2015DFA01710), by the Natural Science Foundation of Jiangsu Province (BK20170094), by the Chinese Ministry of Education Project of Humanities and Social Sciences (13YJCZH171), and by the 11th Jiangsu Province Six talent peaks of high level talents (2014_ZBZZ_005).

References

  1. 1.
    Hutchinson, S.; Hager, G.D.; Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)CrossRefGoogle Scholar
  2. 2.
    Korayem, M.H.; Khoshhal, K.; Aliakbarpour, H.: Vision based simulation and experiment for performance tests of robot. Int. J. Adv. Manuf. Technol. 25(11–12), 1218–1231 (2005)CrossRefGoogle Scholar
  3. 3.
    Liu, C.; Huang, X.; Wang, M.: Target tracking for visual servoing systems based on an adaptive Kalman filter. Int. J. Adv. Robot. Syst. 9(4), 149 (2012)CrossRefGoogle Scholar
  4. 4.
    Gortcheva, E.; Garrido, R.; Gonzalez, E.; Carvallo, A.: Predicting a moving object position for visual servoing: theory and experiments. Int. J. Adapt. Control Signal Process. 15(4), 377–392 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chaumette, F.; Hutchinson, S.: Visual servo control. I. Basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  6. 6.
    Corke, P.I.; Good, M.C.: Dynamic effects in visual closed-loop systems. IEEE Trans. Robot. Autom. 12(5), 671–683 (1996)CrossRefGoogle Scholar
  7. 7.
    Jean, J.-H.; Lian, F.-L.: Robust visual servo control of a mobile robot for object tracking using shape parameters. IEEE Trans. Control Syst. Technol. 20(6), 1461–1472 (2012)CrossRefGoogle Scholar
  8. 8.
    Haiyan, W.; Lou, L.; Chen, C.-C.; Hirche, S.; Kuhnlenz, K.: Cloud-based networked visual servo control. IEEE Trans. Ind. Electron. 60(2), 554–566 (2013)CrossRefGoogle Scholar
  9. 9.
    Huang, H.; Huang, T.; Chen, X.: Guaranteed \(H_\infty \) performance state estimation of delayed static neural networks. IEEE Trans. Circuits Syst. II Express Briefs 60(6), 371–375 (2013)CrossRefGoogle Scholar
  10. 10.
    Zhang, J.; Lin, Y.; Feng, G.: Design of memoryless output feedback controller of discrete-time systems with input delay. IET Control Theory Appl. 9(8), 1205–1212 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ishii, I.; Nakabo, Y.; Ishikawa, M.: Target tracking algorithm for 1 ms visual feedback system using massively parallel processing. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2309–2314 (1996)Google Scholar
  12. 12.
    Seuret, A.; Michaut, F.; Richard, J.-P.; Divoux, T.: Networked control using GPS synchronization. In: American Control Conference, p. 6 (2006)Google Scholar
  13. 13.
    Fridman, E.; Seuret, A.; Richard, J.-P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, H.P.; Vasseur, C.; Koncar, V.: Piecewise continuous systems used in trajectory tracking of a vision based x–y robot. In: Sobh, T., Elleithy, K., Mahmood, A., Karim, M.A. (eds.) Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics, pp. 255–260. Springer, London (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, H.P.; Tian, Y.; Christov, N.: Piecewise-continuous observers for linear systems with sampled and delayed output. Int. J. Syst. Sci. 47(8), 1804–1815 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ahrens, J.H.; Tan, X.; Khalil, H.K.: Multirate sampled-data output feedback control with application to smart material actuated systems. IEEE Trans. Autom. Control 54(11), 2518–2529 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hussein, M.T.; Söffker, D.: State variables estimation of flexible link robot using vision sensor data. In: 7th Vienna International Conference on Mathematical Modelling, pp. 193–198 (2012)Google Scholar
  18. 18.
    Hussein, M.T.: Vision-Based Control of Flexible Robot Systems. Ph.D. Thesis, Duisburg, Essen, Universität (2014)Google Scholar
  19. 19.
    Mohammed, A.; Wang, H.; Tian, Y.: Feedback delay compensation of a visual servoing system using a piecewise continuous and current estimator-based observer. Turk. J. Electr. Eng. Comput. Sci. 25, 3738–3751 (2017)CrossRefGoogle Scholar
  20. 20.
    Deng, L.; Janabi-Sharifi, F.; Wilson, W.J.: Stability and robustness of visual servoing methods. In: Proceedings of IEEE International Conference on Robotics and Automation ICRA’02, vol. 2, pp. 1604–1609 (2002)Google Scholar
  21. 21.
    Wu, H.; Chen, C.-C.; Feng, J.; Kühnlenz, K.; Hirche, S.: A switching control law for a networked visual servo control system. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 5556–5563 (2010)Google Scholar
  22. 22.
    Koncar, V.; Vasseur, C.: Control of linear systems using piecewise continuous systems. IET Control Theory Appl. 150(6), 565–576 (2003)CrossRefGoogle Scholar
  23. 23.
    Wang, H.; Vasseur, C.; Tian, Y.; Koncar, V.; Christov, N.: Recursive model free controller: application to friction compensation and trajectory tracking. Int. J. Control Autom. Syst 9(6), 1146–1153 (2011)CrossRefGoogle Scholar
  24. 24.
    Wang, H.P.; Vasseur, C.; Christov, N.; Koncar, V.: Vision servoing of robot systems using piecewise continuous controllers and observers. Mech. Syst. Signal Process. 33, 132–141 (2012)CrossRefGoogle Scholar
  25. 25.
    Engell, S.; Frehse, G.; Schniederl, E.: Modelling, Analysis and Design of Hybrid Systems, vol. 279. Springer, Berlin (2003)Google Scholar
  26. 26.
    Wang, H.; Vasseur, C.; Koncar, V.; Chamroo, A.; Christov, N.: Sampled tracking for delayed systems using two-time-scale sampled-data controllers. Stud. Inform. Control 19(4), 339–346 (2010)CrossRefGoogle Scholar
  27. 27.
    Koncar, V.; Vasseur, C.: Piecewise functioning systems: Bi-sampled controllers. Stud. Inform. Control 11(2), 185–198 (2002)Google Scholar
  28. 28.
    Šiljak, D.D.; Stipanovic, D.M.: Robust stabilization of nonlinear systems: the LMI approach. Math. Prob. Eng. 6(5), 461–493 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Unbehauen, H.: Control Systems. Robotics and Automation. EOLSS, Oxford (2009)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Sino-French International Joint Laboratory of Automation and Signals (LaFCAS), Automation SchoolNanjing University of Science and TechnologyNanjingChina

Personalised recommendations