Arabian Journal for Science and Engineering

, Volume 43, Issue 7, pp 3547–3556 | Cite as

Application of SBA-15/Diphenyl Carbazon/SDS Nanocomposite as Solid-Phase Extractor for Simultaneous Determination of Cu(II) and Zn(II) Ions

  • Ali Mirabi
  • Ali Shokuhi Rad
  • Faranak Divsalar
  • Hassan Karimi-Maleh
Research Article - Chemistry


In the present study, trace quantities of copper(II) and zinc(II) ions in natural water, herbal and food samples was separated, preconcentrated and determined by a new nanocomposite. The nanocomposite was prepared by immobilization of diphenylcarbazone on SBA-15 nanoparticles coated with anionic surfactant sodium dodecyl sulfate. In order to investigate the effectiveness and size of the surface, SBA-15 nanoparticles and nanocomposites were analyzed by Brunauer–Emmett–Teller technique, transmission electron microscope, elemental analysis map, energy-dispersive X-ray spectroscopy, thermogravimetric analysis and elemental analysis CHNS. The effective factors such as pH, adsorbent amount, extraction time, eluent concentration and acid recovery volume were investigated and optimized for quantitative determination of Cu(II) and Zn(II) ions. Figures of merit such as precision, accuracy, limit of detection, enhancement factor and enrichment factor were obtained with good results. The linear range of the calibration graph was between 0.5 and 100 ng \(\hbox {mL}^{-1}\) for Cu(II) and between 1 and 500 ng \(\hbox {mL}^{-1}\) for Zn(II), and the detection limit was calculated to be 0.21 and \(0.93\,\hbox {ng} \,\hbox {mL}^{-1}\), respectively. Relative standard deviations of Cu and Zn were calculated to be 1.54 and 1.31%, respectively.


SBA-15 Copper and zinc determination Preconcentration Nanocomposites Solid-phase extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the research council at Islamic Azad University of Qaemshahr for Financial Support.


  1. 1.
    Wang, S.; Zhang, R.: Column preconcentration of lead in aqueous solution with macroporous epoxy resin-based polymer monolithic matrix. Anal. Chim. Acta 575, 166–171 (2006)CrossRefGoogle Scholar
  2. 2.
    Madrakian, T.; Afkhami, A.; Zolfigol, M.A.; Solgi, M.: Separation, preconcentration and determination of silver ion from water samples using silica gel modified with 2, 4, 6-trimorpholino-1, 3, 5-triazin. J. Hazard. Mater. 128, 67–72 (2006)CrossRefGoogle Scholar
  3. 3.
    Afzali, D.; Mostafavi, A.; Taher, M.A.; Moradian, A.: Flame atomic absorption spectrometry determination of trace amounts of copper after separation and preconcentration onto TDMBAC-treated analcime pyrocatechol-immobilized. Talanta 71, 971–975 (2007)CrossRefGoogle Scholar
  4. 4.
    Arpa-Sahin, C.; Tokgoz, I.: A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry. Anal. Chim. Acta 667, 83–87 (2010)CrossRefGoogle Scholar
  5. 5.
    Decker, H.; Terwilliger, N.: Cops and robbers: putative evolution of copper oxygen-binding proteins. J. Exp. Biol. 203, 1777–1782 (2000)Google Scholar
  6. 6.
    Donmez, H.; Dursun, N.; Ozkul, Y.; Demiratas, H.: Increased sister chromatid exchange in workers exposed to occupational lead and zinc. Biol. Trace Elem. Res. 61, 105–109 (1998)CrossRefGoogle Scholar
  7. 7.
    Batra, N.; Nehru, B.; Bansal, M.P.: Reproductive potential of male portan rats exposed to various levels of lead with regard to zinc status. Br. J. Nutr. 91, 387–391 (2004)CrossRefGoogle Scholar
  8. 8.
    Holcatova, I.; Bencko, V.: Environmental epidemiology of malignancies. The central European perspective. Cent. Eur. J. Publ. Health 6, 13–17 (1998)Google Scholar
  9. 9.
    Nemoto, K.; Kondo, Y.; Himeno, S.; Suzuki, Y.; Hara, S.; Akimoto, M.; Imura, N.: Modulation of telomerase activity by zinc in human prostatic and renal cancer cells. Biochem. Pharmacol. 4, 401–405 (2000)CrossRefGoogle Scholar
  10. 10.
    Powell, S.R.: The antioxidant properties of zinc. J. Nutr. 130, 1447S–54S (2000)CrossRefGoogle Scholar
  11. 11.
    Waalkes, M.P.: An ecotoxical study of poulation of the white foot mouse (Peromyscus Leucopus) in haluting a polychlorinated biphenyles contaminated area. Arch. Environ. Contam. Toxicol. 19, 283–290 (1990)CrossRefGoogle Scholar
  12. 12.
    Sprenger, K.B.; Bundschu, D.; Lewis, K.; Spohn, B.; Schmitz, J.; Franz, H.F.: Improvement of uremic neuropathy and hypogeusia by dialysate zinc supplementation: a double-blind study. Kidney Int. Suppl. 16, S315–S318 (1983)Google Scholar
  13. 13.
    Ajavi, O.B.; Odutuga, A.: Effect of low-zinc status and essential fatty acid deficiency on the activities of aspartate aminotransferase and alanine amino transferase in liver and serum of albino rats. Nahrung. Food 48, 88–90 (2004)CrossRefGoogle Scholar
  14. 14.
    Bonham, M.; O’Connor, J.M.; Hannigan, B.M.; Strain, J.J.: The immune system as a physiological indicator of marginal copper status. Br. J. Nutr. 87, 393–403 (2002)CrossRefGoogle Scholar
  15. 15.
    Jadhav, S.B.; Tandel, S.P.; Malve, S.P.: Extraction and spectrophotometric determination of cadminm(II) with isonitroso-5-methyl-2-hexanone. Talanta 55, 1059–1064 (2001)CrossRefGoogle Scholar
  16. 16.
    Sanz-Medel, A.; Fernandez, D.L.; Campa, M.R.; Gonzalez, E.B.; Fernandez-Sanchez, M.L.: Organised surfactant assemblies in analytical atomic spectrometry. Spectrochim. Acta B 54, 251–287 (1999)CrossRefGoogle Scholar
  17. 17.
    Stalikas, C.D.: Micelle-mediated extraction as a tool for separation and pre-concentration in metal analysis. Trends Anal. Chem. 21, 343–355 (2002)CrossRefGoogle Scholar
  18. 18.
    Liang, P.; Yang, J.: Cloud point extraction preconcentration and spectrophotometric determination of copper in food and water samples using amino acid as the complexing agent. J. Food Compos. Anal. 23, 95–99 (2010)CrossRefGoogle Scholar
  19. 19.
    Citak, D.; Tuzen, M.: A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food Chem. Toxicol. 48, 1399–1404 (2010)CrossRefGoogle Scholar
  20. 20.
    Shah, A.Q.; Kazi, T.G.; Baig, J.A.; Afridi, H.I.; Kandhro, G.A.; Arain, M.B.; Kolachi, N.F.; Wadhwa, S.K.: Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry. Food Chem. Toxicol. 48, 65–69 (2010)CrossRefGoogle Scholar
  21. 21.
    Kara, D.; Alkan, M.: Preconcentration and separation of copper(II) with solvent extraction using N, N’-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Microchem. J. 71, 29–39 (2002)CrossRefGoogle Scholar
  22. 22.
    Shimizu, T.; Hagiwara, M.; Takino, K.; Fresenius, Z.: Column-chromatographic separation of mercury, cadmium, zinc and lead with phosphated cellulose in hydrochloric acid media. Anal. Chem. 306, 29–30 (1981)CrossRefGoogle Scholar
  23. 23.
    Mirabi, A.; Shokuhi-Rad, A.; Khodadad, H.: Modified surface based on magnetic nanocomposite of dithiooxamide/Fe\(_{3}\)O\(_{4}\) as a sorbent for preconcentration and determination of trace amounts of copper. J. Magn. Magn. Mater. 389, 130–135 (2015)CrossRefGoogle Scholar
  24. 24.
    Guangyu, Y.; Zhangjie, H.; Qiufen, H.; Jiayuan, Y.: Study on the solid phase extraction of Co(II)-QADEAB chelate with C\(_{18}\) disk and its application to the determination of trace cadmium. Talanta 58, 511–515 (2002)CrossRefGoogle Scholar
  25. 25.
    Ezoddin, M.; Shemirani, F.; Jamali, M.R.: Application of modified nanoalumina as a solid phase extraction adsorbent for the preconcentration of Cd and Pb in water and herbal samples prior to flame atomic absorption spectrometry determination. J. Hazard. Mater. 178, 900–905 (2010)CrossRefGoogle Scholar
  26. 26.
    Pyrzynska, K.: Functionalized cellulose sorbents for preconcentration of trace metals in environmental analysis. Crit. Rev. Anal. Chem. 29, 313–321 (1999)CrossRefGoogle Scholar
  27. 27.
    Mirabi, A.; Shokouhi Rad, A.; Nourani, S.: Application of modified magnetic nanoparticles as a sorbent for preconcentration and determination of nickel ions in food and environmental water samples. TrAC Trends Anal. Chem. 74, 146–151 (2015)CrossRefGoogle Scholar
  28. 28.
    Mirabi, A.; Shokuhi-Rad, A.; Jamali, M.R.; Danesh, N.: Use of modified \(\gamma \)-alumina nanoparticles for the extraction and preconcentration of trace amounts of cadmium ions. Aust. J. Chem. 69, 314–318 (2016)CrossRefGoogle Scholar
  29. 29.
    Daniel, M.B.; Claudio, F.L.; Nicolle, F.R.; Teresa, C.O.F.; Ricardo, J.C.: Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion. Spectrochim. Acta Part B 66, 338–344 (2011)CrossRefGoogle Scholar
  30. 30.
    Zhang, L.; Li, Z.H.; Hu, Z.; Chang, X.J.S.: Solid phase extraction of gold (III) on attapulgite modified with triocarbohydrazide prior to its determination in environmental samples by ICP-OES. Spectrochim. Acta A 79, 1234–1239 (2011)CrossRefGoogle Scholar
  31. 31.
    Saraji, M.; Yousefi, H.: Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. J. Hazard. Mater. 167, 1152–1157 (2009)CrossRefGoogle Scholar
  32. 32.
    Sadeghi, S.; Sheikhzadeh, E.: Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples. J. Hazard. Mater. 163, 861–868 (2009)CrossRefGoogle Scholar
  33. 33.
    Mirabi, A.; Rad, A.S.; Khanjari, Z.; Moradian, M.: Preparation of SBA-15/graphene oxide nanocomposites for preconcentration and determination of trace amounts of rutoside in blood plasma and urine. Sens. Actuators B 253, 533–541 (2017)CrossRefGoogle Scholar
  34. 34.
    Qu, F.Y.; Zhu, G.S.; Huang, S.Y.; Li, S.G.; Qiu, S.L.: Effective controlled release of captopril by silylation of mesoporous MCM-41. Chem. Phys. Chem. 7, 400–406 (2006)CrossRefGoogle Scholar
  35. 35.
    Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartulli, J.C.; Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)CrossRefGoogle Scholar
  36. 36.
    Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)CrossRefGoogle Scholar
  37. 37.
    Haji-aghababaei, L.; Badaei, A.R.; Ganjali, M.R.; Heydari, S.; Khaniani, Y.; Ziarani, G.M.: Highly efficient removal and preconcentration of lead and cadmium cations from water and wastewater samples using ethylenediamine functionalized SBA-15. Desalination 266, 182–187 (2011)CrossRefGoogle Scholar
  38. 38.
    Ju, Y.H.; Webb, O.F.; Dai, S.; Lin, J.S.; Barnes, C.E.: Synthesis and characterization of ordered mesoporous anion-exchange inorganic/organic hybrid resins for radionuclide separation. Ind. Eng. Chem. Res. 39, 550–553 (2000)CrossRefGoogle Scholar
  39. 39.
    Yu, C.Z.; Fan, J.; Tian, B.Z.; Zhao, D.Y.; Stucky, G.D.: High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 14, 1742–1745 (2002)CrossRefGoogle Scholar
  40. 40.
    Mirabi, A.; Dalirandeh, Z.; Shokuhi-Rad, A.: Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry. J. Magn. Magn. Mater. 381, 138–144 (2015)CrossRefGoogle Scholar
  41. 41.
    Tabrizi, B.A.: Cloud point extraction and spectrofluorimetric determination of aluminium and zinc in foodstuffs and water samples. Food Chem. 100, 1698–1703 (2007)CrossRefGoogle Scholar
  42. 42.
    Ghaedi, M.; Tavallali, H.; Shokrollahi, A.; Zahedi, M.; Montazerozohori, M.; Soylak, M.: Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanedi-mine chelates. J. Hazard. Mater. 166, 1441–1448 (2009)CrossRefGoogle Scholar
  43. 43.
    Ferreira, S.L.G.; Bezerra, M.A.; Dossanton, W.N.L.; Neto, B.B.: Application of Doehlert designs for optimization of an on-line preconcentration system for copper determination by flam atomic absorption spectrometry. Talanta 61, 295–303 (2003)CrossRefGoogle Scholar
  44. 44.
    Baytak, S.; Kenduzler, E.; Rehber-Turker, A.: Separation/preconcentration of Zn(II), Cu(II), and Cd(II) by saccharomyces carlsbergensis immobilized on silica gel 60 in various samples. Sep. Sci. Technol. 41, 3449–3465 (2006)CrossRefGoogle Scholar
  45. 45.
    Shoaee, H.; Roshdi, M.; Khanlarzadeh, N.; Beiraghi, N.: Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98, 70–75 (2012)CrossRefGoogle Scholar
  46. 46.
    Ghaedi, M.; Niknam, K.; Shokrollahi, A.; Niknam, E.; Ghaedi, H.; Soylak, M.: A solid phase extraction procedure for Fe\(^{3+},\) Cu\(^{2+}\) and Zn\(^{2+}\) ions on 2-phenyl-1H-benzo[d] imidazole loaded on triton X-100-coated polyvinyl chloride. J. Hazard. Mater. 158, 131–136 (2008)CrossRefGoogle Scholar
  47. 47.
    Karada, C.; Kara, D.: Dispersive liquid–liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry. Food Chem. 220, 242–248 (2017)CrossRefGoogle Scholar
  48. 48.
    Al-Jabri, M.; Al-Kindy, S.M.Z.; Suliman, F.E.O.; Varghese, B.; Al-Busafi, S.N.; Al-Lawati, H.J.: Spectrofluorimetric determination of Zn\(^{2+}\) ions in aqueous medium using 5-(4-flourophenyl)-quinolin-8-ol. J. Assoc. Arab Univ. Basic Appl. Sci. 24, 66–73 (2017)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  2. 2.Department of Chemical Engineering, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  3. 3.Department of ChemistryGraduate University of Advanced TechnologyKermanIran

Personalised recommendations