Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5785–5797 | Cite as

Optimization and Kinetic Model Development for Photocatalytic Dye Degradation

  • N. Setarehshenas
  • S. H. Hosseini
  • G. Ahmadi
Research Article - Chemical Engineering
  • 67 Downloads

Abstract

In this study, the carbon-doped zirconium dioxide (\(\hbox {ZrO}_{2}\)–C) nanocatalyst was synthesized by sol–gel method and was used for the degradation of basic red 46 (BR46) in water. In order to optimize the dye removal efficiency, different experimental variables involving pH, \(\hbox {ZrO}_{2}\)–C concentration, initial BR46 concentration, and light intensity were analyzed by the response surface methodology. Variance analysis showed high determination coefficient values, with \(R^{2}\) and adjusted-\(R^{2}\) of, respectively, 0.9984 and 0.9965, as well as, a satisfactory prediction of the second-order regression model. Optimization results showed a maximum color removal efficiency of 98.4% at the optimal condition with initial pH 11, ZrO2–C concentration \(= 0.15\) g/L, UV light intensity \(= 18\,\hbox {W}\) and the initial dye concentration \(= 5\) mg/L. Finally, a new kinetic model, in the form of Langmuir–Hinshelwood equation, based on the intrinsic element reactions was developed. The results indicated that the developed DDR-II model fitted well with the experimental data and with a minimal value of the mean absolute relative residual (13.08%).

Keywords

Photocatalytic degradation \(\hbox {ZrO}_{2}\)–C nanocatalyst Response surface modeling Elementary photocatalytic reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, C.S.; Shin, J.W.; An, S.H.; Jang, H.D.; Kim, T.O.: Photodegradation of volatile organic compounds using zirconium-doped TiO2/SiO2 visible light photocatalysts. Chem. Eng. J. 40, 204–206 (2012)Google Scholar
  2. 2.
    Agorku, E.S.; Pandey, A.C.; Mamba, B.B.; Mishra, A.K.: Gd, C, N, S multi-doped ZrO2 for photocatalytic degradation of indigo carmine dye from synthetic water under simulated solar light. Mater. Today Proc. 2, 3909–3920 (2015)CrossRefGoogle Scholar
  3. 3.
    Khaksar, M.; Amini, M.; Boghaei, D.M.; Chae, K.H.; Gautam, S.: Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 72, 1–5 (2015)CrossRefGoogle Scholar
  4. 4.
    Sudrajat, H.; Babel, S.; Sakai, H.; Takizawa, S.: Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO\(_{2}\). J. Environ. Manag. 165, 224–234 (2016)CrossRefGoogle Scholar
  5. 5.
    Alalm, M.G.; Ookawara, S.; Fukushi, D.; Sato, A.; Tawfik, A.: Improved WO3 photocatalytic efficiency using ZrO\(_{2}\) and Ru for the degradation of carbofuran and ampicillin. J. Hazard. Mater. 302, 225–231 (2016)CrossRefGoogle Scholar
  6. 6.
    López, T.; Alvarez, M.; Tzompantzi, F.; Picquart, M.: Photocatalytic degradation of 2,4-dichlorophenoxiacetic acid and 2,4,6-trichlorophenol with ZrO\(_{2}\) and Mn/ZrO\(_{2}\) sol–gel materials. J. Sol-Gel Sci. Technol. 37, 207–211 (2006)CrossRefGoogle Scholar
  7. 7.
    Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K.: Influence of crystal structure of nanosized ZrO\(_{2}\) on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 10, 1–13 (2015)CrossRefGoogle Scholar
  8. 8.
    Gusain, D.; Dubey, S.; Upadhyay, S.N.; Weng, C.H.; Sharma, Y.C.: Studies on optimization of removal of orange G from aqueous solutions by a novel nanoadsorbent. J. Ind. Eng. Chem. 33, 42–45 (2016)CrossRefGoogle Scholar
  9. 9.
    Fakhri, A.; Behrouz, S.; Tyagi, I.; Agarwal, S.; Gupta, V.K.: Synthesis and characterization of ZrO\(_{2}\) and carbon-doped ZrO\(_{2}\) nanoparticles for photocatalytic application. J. Molecul. Liq. 216, 342–346 (2016)CrossRefGoogle Scholar
  10. 10.
    Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  11. 11.
    Navio, J.A.; Hidalgo, M.C.; Colon, G.; Botta, S.G.; Litter, M.I.: Preparation and physicochemical properties of ZrO\(_{2}\) and Fe/ZrO\(_{2}\) prepared by a sol–gel technique. Langmuir 17, 202–210 (2001)CrossRefGoogle Scholar
  12. 12.
    Botta, S.G.; Navio, J.A.; Hidalgo, M.C.; Restrepo, G.M.; Litter, M.I.: Photocatalytic properties of ZrO\(_{2}\) and Fe/ZrO\(_{2}\) semiconductors prepared by a sol–gel technique. J. Photochem. Photobiol. A Chem. 129, 89–99 (1999)CrossRefGoogle Scholar
  13. 13.
    Sreethawong, T.; Ngamsinlapasathian, S.; Yoshikawa, S.: Synthesis of crystalline mesoporous-assembled ZrO\(_{2}\) nanoparticles via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity. Chem. Eng. J. 228, 256–262 (2013)CrossRefGoogle Scholar
  14. 14.
    Matsui, H.; Ohkura, N.; Karuppuchamy, S.; Yoshihara, M.: The effect of surface area on the photo-catalytic behavior of ZrO2/carbon clusters composite materials. Ceram. Int. 39, 5827–5831 (2013)CrossRefGoogle Scholar
  15. 15.
    Turchi, C.S.; Ollis, D.F.: Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178–192 (1990)CrossRefGoogle Scholar
  16. 16.
    Li, Y.; Sun, S.; Ma, M.; Ouyang, Y.; Yan, W.: Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO\(_{2}\)-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO\(_{2}\) content in the catalyst. Chem. Eng. J. 142, 147–155 (2008)CrossRefGoogle Scholar
  17. 17.
    Mansouri, M.; Nademi, M.; Olya, M.E.; Lotfi, H.: Study of methyl tert-butyl Ether (MTBE) photocatalytic degradation with UV/TiO\(_{2}\)–ZnO–CuO nanoparticles. J. Chem. Heal. Risks 7, 19–32 (2017)Google Scholar
  18. 18.
    Ollis, D.F.; Pelizzetti, E.; Serpone, N.: Photocatalyzed destruction of water contaminant. Environ. Sci. Technol. 25, 1522–1529 (1991)CrossRefGoogle Scholar
  19. 19.
    Box, G.E.P.; Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, New York (1987)zbMATHGoogle Scholar
  20. 20.
    Bas, D.; Boyaci, I.H.: Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78, 836–845 (2007)CrossRefGoogle Scholar
  21. 21.
    Akhbari, A.; Zinatizadeh, A.A.L.; Mohammadi, P.; Irandoust, M.; Mansouri, Y.: Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using response surface methodology. Chem. Eng. J. 168, 269–279 (2011)CrossRefGoogle Scholar
  22. 22.
    Ghorbania, F.; Younesi, H.; Ghasempouri, S.M.; Zinatizadeh, A.A.; Amini, M.; Daneshi, A.: Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J. 145, 267–275 (2008)CrossRefGoogle Scholar
  23. 23.
    Montgomery, D.C.: Design and Analysis of Experiments, 7th edn. Wiley, New Delhi (2012)Google Scholar
  24. 24.
    Anupam, K.; Dutta, S.; Bhattacharjee, C.; Datta, S.: Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon: optimisation through response surface methodology. Chem. Eng. J. 173, 135–143 (2011)CrossRefGoogle Scholar
  25. 25.
    Aydin, Y.A.; Aksoy, N.D.: Adsorption of chromium on Chitosan: optimization, kinetics and thermodynamics. Chem. Eng. J. 151, 188–198 (2009)CrossRefGoogle Scholar
  26. 26.
    Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z.: X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)CrossRefGoogle Scholar
  27. 27.
    Myers, R.H.; Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edn. Wiley, New York (2002)zbMATHGoogle Scholar
  28. 28.
    Zhang, J.; Fu, D.; Xu, Y.; Liu, C.: Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO\(_{2}\) as photocatalyist by response surface methodology. J. Environ. Sci. 22, 1281–1289 (2010)CrossRefGoogle Scholar
  29. 29.
    Khataee, A.R.; Fathinia, M.; Aber, S.: Kinetic modeling of liquid phase photocatalysis on supported TiO\(_{2}\) nanoparticles in a rectangular flat-plate photoreactor. Ind. Eng. Chem. Res. 49, 12358–12364 (2010)CrossRefGoogle Scholar
  30. 30.
    Khataee, A.R.; Fathinia, M.; Aber, S.: Kinetic study of photocatalytic decolorization of C.I. Basic Blue 3 solution on immobilized titanium dioxide nanoparticles. Chem. Eng. Res. Des. 89, 2110–2116 (2011)CrossRefGoogle Scholar
  31. 31.
    Amani-Ghadim, A.R.; Dorraji, M.S.S.: Modeling of photocatalyatic process on synthesized ZnO nanoparticles: kinetic model development and artificial neural networks. Appl. Catal. B Environ. 163, 539–546 (2015)CrossRefGoogle Scholar
  32. 32.
    Kaneco, S.; Li, N.; Itoh, K.; Katsumata, H.; Suzuki, T.; Ohta, K.: Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: kinetics and mineralization. Chem. Eng. J. 148, 50–56 (2009)CrossRefGoogle Scholar
  33. 33.
    Moradi, H.; Sharifnia, S.; Rahimpour, F.: Photocatalytic decolorization of reactive yellow 84 from aqueous solutions using ZnO nanoparticles supported on mineral LECA. Mater. Chem. Phys. 158, 38–44 (2015)CrossRefGoogle Scholar
  34. 34.
    Dutta, S.; Parsons, S.A.; Bhattacharjee, C.; Jarvis, P.; Datta, S.; Bandyopadhyay, S.: Kinetic study of adsorption and photo-decolorization of reactive red 198 on TiO\(_{2}\) surface. Chem. Eng. J. 155, 674–679 (2009)CrossRefGoogle Scholar
  35. 35.
    Terzian, R.; Serpone, N.; Fox, M.A.: Heterogeneousphotocatalyzed oxidation of creosote components: mineralization of xylenols by illuminated TiO\(_{2}\) in oxygenated aqueous media. J. Photochem. Photobiol. A Chem. 90, 125–135 (1995)CrossRefGoogle Scholar
  36. 36.
    Rothenberger, G.; Moser, J.; Graetzel, M.; Serpone, N.; Sharma, D.K.: Charge carrier trapping and recombination dynamics in small semiconductor particles. JACS 107, 8054–8059 (1985)CrossRefGoogle Scholar
  37. 37.
    Arana, J.; Peña Alonso, A.; Doña Rodríguez, J.M.; Herrera Melián, J.A.; González Díaz, O.; Pérez Peña, J.: Comparative study of MTBE photocatalytic degradation with TiO\(_{2}\) and Cu–TiO\(_{2}\). Appl. Catal. B 78, 355–363 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Eyvan-e-Gharb BranchIslamic Azad UniversityEyvanIran
  2. 2.Department of Chemical EngineeringUniversity of Sistan and BaluchestanZahedanIran
  3. 3.Department of Chemical EngineeringIlam UniversityIlamIran
  4. 4.Department of Mechanical and Aeronautical EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations