Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5771–5783 | Cite as

Caesium Salt of Tungstophosphoric Acid Supported on Mesoporous SBA-15 Catalyst for Selective Esterification of Lauric Acid with Glycerol to Monolaurin

  • Syamima Nasrin Mohamed Saleh
  • Mohd Hizami Mohd Yusoff
  • Ahmad Zuhairi Abdullah
Research Article - Chemical Engineering

Abstract

\(\hbox {Cs}_{2.5}\hbox {H}_{0.5}\hbox {PW}_{12}\hbox {O}_{40}\) supported on SBA-15 catalysts were prepared via two-sequential-step post-impregnation method with different ratios of cesium salt. The synthesized catalysts were then characterized using nitrogen adsorption–desorption, FTIR, EDX, SEM, BET and TGA analyses in order to determine the physicochemical properties of the catalysts. The activity of the catalysts in the esterification of glycerol to monolaurin was investigated under various reaction parameters including catalyst loadings, reaction temperatures and glycerol-to-lauric acid molar ratio. The highest lauric acid conversion (71.8%) with 44.9% of monolaurin yield was obtained using 20 wt%Cs-HPW/SBA-15 catalyst in 4 h at 170 \({^{\circ }}\hbox {C}\) using 4:1 of glycerol-to-lauric acid molar ratio and 2.5 wt% of catalyst loading. This catalyst was stable and reusable for up to three cycles in the esterification reaction without significant loss in catalytic activity.

Keywords

12-Tungstophosphoric acid SBA-15 Selective esterification Lauric acid Monolaurin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

A Research University Grant (814181) and a Dana Inovasi Awal Grant (AUPI00234) from Universiti Sains Malaysia and a Transdisciplinary Research Grant Scheme (6762001) from the Ministry of Higher Education Malaysia are gratefully acknowledged.

References

  1. 1.
    Yusoff, M.H.M.; Abdullah, A.Z.: Catalytic behavior of sulfated zirconia supported on SBA-15 as catalyst in selective glycerol esterification with palmitic acid to monopalmitin. J. Taiwan Inst. Chem. Eng. 60, 199–204 (2016)CrossRefGoogle Scholar
  2. 2.
    Hermida, L.; Abdullah, A.Z.; Mohamed, A.R.: Synthesis of monoglyceride through glycerol esterification with lauric acid over propyl sulfonic acid post-synthesis functionalized SBA-15 mesoporous catalyst. Chem. Eng. J. 174, 668–676 (2011)CrossRefGoogle Scholar
  3. 3.
    Alrouh, F.; Karam, A.; Alshaghel, A.; El-Kadri, S.: Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids. Arab. J. Chem. 10(1), S281–S286 (2017)CrossRefGoogle Scholar
  4. 4.
    Simsek, V.; Degirmenci, L.; Murtezaoglu, K.: Synthesis of a silicotungstic acid SBA-15 catalyst for selective monoglyceride production. React. Kinet. Mech. Catal. 117, 773–788 (2016)CrossRefGoogle Scholar
  5. 5.
    Hoo, P.Y.; Abdullah, A.Z.: Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chem. Eng. J. 250, 274–287 (2014)CrossRefGoogle Scholar
  6. 6.
    Dias, J.A.; Caliman, E.; Dias, S.C.L.: Effects of cesium ion exchange on acidity of 12-tungstophosphoric acid. Microporous Mesoporous Mater. 76, 221–232 (2004)CrossRefGoogle Scholar
  7. 7.
    Rao, P.M.; Landau, M.V.; Wolfson, A.; Shapira-Tchelet, A.M.; Herskowitz, M.: Cesium salt of a heteropolyacid in nanotubular channels and on the external surface of SBA-15 crystals: preparation and performance as acidic catalysts. Microporous Mesoporous Mater. 80, 43–55 (2005)CrossRefGoogle Scholar
  8. 8.
    Landau, M.V.; Rao, P.M.; Thomas, S.; Pitchon, V.; Zukerman, R.; Vradman, L.; Herskowitz, M.: Application of Cs salt of 12-tungstophosphoric acid supported on SBA-15 mesoporous silica in NOx storage. Top. Catal. 42, 203–207 (2007)CrossRefGoogle Scholar
  9. 9.
    Ibrahim, S.M.; El-Shobaky, G.A.: Catalytic efficiency of cesium and potassium salts of dodecatungstophosphoric acid supported on silica and comparison with H3PW12O40/SiO2. Kinet. Catal. 49, 484–492 (2008)CrossRefGoogle Scholar
  10. 10.
    Chiou, J.; Liu, S.; Ho, K.; Huang, H.; Tang, C.; Wang, C.: Ca-modified Co/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Int. Lett. Chem. Phys. Astron. 5, 1–16 (2014)Google Scholar
  11. 11.
    Gagea, B.C.; Lorgouilloux, Y.; Altintas, Y.; Jacobs, P.A.; Martens, J.A.: Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis. J. Catal. 265, 99–108 (2009)CrossRefGoogle Scholar
  12. 12.
    Niiyama, H.; Saito, Y.; Echigoya, E.: In: Proceedings, 7th International Congress on Catalysis, Tokyo, 1980. Kodansha, Tokyo/Elsevier, Amsterdam (1981)Google Scholar
  13. 13.
    Gallegos-Suarez, E.; Pérez-Cadenas, M.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.; Arcoya, A.: Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol. Appl. Surf. Sci. 287, 108–116 (2013)CrossRefGoogle Scholar
  14. 14.
    Ertl, G.; Knözinger, H.; Weitkamp, J.: Preparation of solid catalysts. Wiley, New York (2008)Google Scholar
  15. 15.
    Khder, A.E.R.S.; Hassan, H.M.A.; El-Shall, M.S.: Acid catalyzed organic transformations by heteropoly tungstophosphoric acid supported on MCM-41. Appl. Catal. A Gen. 411–412, 77–86 (2012)CrossRefGoogle Scholar
  16. 16.
    Olutoye, M.A.; Wong, S.W.; Chin, L.H.; Amani, H.; Asif, M.; Hameed, B.H.: Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renew. Energy 86, 392–398 (2016)CrossRefGoogle Scholar
  17. 17.
    Ravikovitch, P.I.; Neimark, A.V.: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores:? Equilibrium, pore blocking, and cavitation. Langmuir 18, 9830–9837 (2002)CrossRefGoogle Scholar
  18. 18.
    Van Der Voort, P.; Ravikovitch, P.I.; De Jong, K.P.; Benjelloun, M.; Van Bavel, E.; Janssen, A.H.; Neimark, A.V.; Weckhuysen, B.M.; Vansant, E.F.: A new templated ordered structure with combined micro- and mesopores and internal silica nanocapsules. J. Phys. Chem. B 106, 5873–5877 (2002)CrossRefGoogle Scholar
  19. 19.
    Rao-Ginjupalli, S.; Mugawar, S.; Rajan, N.P.; Balla, P.K.; Komandur, V.R.C.: Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts. Appl. Surf. Science 309, 153–159 (2014)CrossRefGoogle Scholar
  20. 20.
    Qiao, S.Z.; Bhatia, S.K.; Zhao, X.S.: Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. Microporous Mesoporous Mater. 65, 287–298 (2003)CrossRefGoogle Scholar
  21. 21.
    Chen, Y.; Zhang, X.-L.; Chen, X.; Dong, B.-B.; Zheng, X.-C.: MCM-41 supported 12-tungstophosphoric acid mesoporous materials: preparation, characterization, and catalytic activities for benzaldehyde oxidation with H2O2. Solid State Sci. 24, 21–25 (2013)CrossRefGoogle Scholar
  22. 22.
    Pistonesi, C.; Juan, A.; Irigoyen, B.; Amadeo, N.: Theoretical and experimental study of methane steam reforming reactions over nickel catalyst. Appl. Surf. Sci. 253, 4427–4437 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548–552 (1998)CrossRefGoogle Scholar
  24. 24.
    Liu, S.; Wang, X.; Wang, K.; Lv, R.; Xu, Y.: ZnO/ZnS-PdS core/shell nanorods: synthesis, characterization and application for photocatalytic hydrogen production from a glycerol/water solution. Appl. Surf. Sci. 283, 732–739 (2013)CrossRefGoogle Scholar
  25. 25.
    Amani, H.; Ahmad, Z.; Hameed, B.H.: Highly active alumina-supported Cs-Zr mixed oxide catalysts for low-temperature transesterification of waste cooking oil. Appl. Catal. A Gen. 487, 16–25 (2014)CrossRefGoogle Scholar
  26. 26.
    Junior, L.; da Silva, O.; Cavalcanti, R.M.; Matos, TMd; Angelica, R.S.; da Rocha Filho, G.N.; Barros, IdCL: Esterification of oleic acid using 12-tungstophosphoric supported in flint kaolin of the Amazonia. Fuel 108, 604–611 (2013)CrossRefGoogle Scholar
  27. 27.
    Dange, P.N.; Rathod, V.K.: Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation. Resour. Effic. Technol. 3, 64–70 (2017)CrossRefGoogle Scholar
  28. 28.
    Hashemizadeh, I.; Abdullah, A.Z.: Influence of process conditions on glycerol esterification catalyzed by tetra-n-butylammonium-modified montmorillonite catalyst. Online J. Sci. Technol. 2, 47–51 (2012)Google Scholar
  29. 29.
    Hermida, L.; Abdullah, A.; Mohamed, A.: Effects of functionalization conditions of sulfonic acid grafted SBA-15 on catalytic activity in the esterification of glycerol to monoglyceride: a factorial design approach. J. Porous. Mater. 19, 835–846 (2012)CrossRefGoogle Scholar
  30. 30.
    Abouzari-lotf, E.; Nasef, M.M.; Zakeri, M.; Ahmad, A.; Ripin, A.: Composite membranes based on heteropolyacids and their applications in fuel cells. In: Inamuddin, D., Mohammad, A., Asiri, A.M. (eds.) Organic-Inorganic Composite Polymer Electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications, pp. 99–131. Springer, Cham (2017)CrossRefGoogle Scholar
  31. 31.
    Macierzanka, A.; Szela̧g, H.: Esterification kinetics of glycerol with fatty acids in the presence of zinc carboxylates? Preparation of modified acylglycerol emulsifiers. Ind. Eng. Chem. Res. 43, 7744–7753 (2004)CrossRefGoogle Scholar
  32. 32.
    Palani, A.; Pandurangan, A.: Esterification of acetic acid over mesoporous Al-MCM-41 molecular sieves. J. Mol. Catal. A Chem. 226, 129–134 (2005)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • Syamima Nasrin Mohamed Saleh
    • 1
  • Mohd Hizami Mohd Yusoff
    • 1
  • Ahmad Zuhairi Abdullah
    • 1
  1. 1.School of Chemical Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations