Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5837–5850 | Cite as

Study on Hydrodesulfurization of a Mixture of Middle Distillates

  • Mohammad F. Abid
  • Shakir M. Ahmed
  • Waleed H. Abohameed
  • Salah M. Ali
Research Article - Chemical Engineering
  • 50 Downloads

Abstract

This study aimed to investigate the feasibility of hydrodesulfurization (HDS) of a mixture of crude oil fractions (e.g., naphtha, kerosene, and gas oil) all in one time in a single reactor loaded with \(\hbox {NiCoMo}/\hbox {Al}_{2}\hbox {O}_{3}\) under various operating parameters such as temperature \((310{-}370\,^{\circ }\hbox {C})\), pressure (40–55 bars), weight hour space velocity \((1.2\hbox {--}3.6\, \hbox {h}^{-1})\), and hydrogen-to-hydrocarbon ratio (150–300 vol/vol). Experimental results showed that temperature and pressure have positive effects on process performance while weight hour space velocity gives a different trend. Optimum operating conditions (i.e., \(350 \,^{\circ }\hbox {C}\), \(50\,\hbox {bars}, 1.2\,\hbox {h}^{-1}\), and 200 vol/vol) with the theoretical and experimental values of HDS efficiency of 95.4 and 95.8%, respectively, were estimated using advance statistical software DESIGN-EXPERT 10.0.6.0. Reaction products were fractionated and analyzed for comparing with products of the conventional HDS method. An approximate evaluation of the proposed system indicated a 60% reduction in fixed capital cost compared to that for conventional hydrotreatment system. The experimental analysis revealed the feasibility of the proposed method.

Keywords

Hydrotreatment Crude oil fractions Middle distillates Sulfur removal \(\hbox {NiCoMo}/\hbox {Al}_{2}\hbox {O}_{3}\) Catalytic reactor 

List of symbols

API

\(\hbox {API}\,\hbox {gravity} = (141.5/\hbox {Specific}\,\hbox {Gravity}) - 131.5\)

BT

Benzothiophene

\(\hbox {C}_{4}\hbox {H}_{4}\hbox {S}\)

Thiophene

DBT

Dibenzothiophene

DDS

Direct desulfurization

DHYD

Dehydrogenation

EP

End boiling point \((^{\circ }\hbox {C})\)

GOL

Gas oil and light fractions

HC

Hydrocarbon

HDS

Hydrodesulfurization

HDT

Hydrotreatment

HN

Heavy naphtha

HP

High pressure

HYD

Hydrogenation

DHYD

Dehydrogenation

IBP

Initial boiling point \((^{\circ }\hbox {C})\)

K

Kerosene

MHC

Mild hydrocracking

LN

Light naphtha

LGO

Light gas oil

P

Pressure (bar)

PR&D

Petroleum research and development

RCR

Reduced crude oil

\({S}_\mathrm{f}\)

Content of sulfur in feed (wppm)

\({S}_\mathrm{p}\)

Content of sulfur in product (wppm)

Sp.gr

Specific gravity of oil (–)

T

Temperature \((^{\circ }\hbox {C})\)

WHSV

Weight hour space velocity \((\hbox {h}^{-1})\)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Researchers are thankful to the School of Chemical Engineering, University of Technology, for assistance in completion of this work. The fund number (1/231/751) which has been awarded by the PR&D Center is highly appreciated.

References

  1. 1.
    Nataly, N.T.; Andrey, P.: Hydrotreating of vacuum gasoil in mixture with delayed coking products on industrial \(\text{ NiMo }/{\text{ Al }}_{{2}}{\text{ O }}_{{3}}\) catalyst. Russ. J. Appl. Chem. 88(4), 609–616 (2015)CrossRefGoogle Scholar
  2. 2.
    Meyers, R.A.: Handbook of Petroleum Refining Processes, 4th edn. McGraw-Hill Education Series, New York (2016)Google Scholar
  3. 3.
    Saeed I.M.; Masoud M.: Advent of nanocatalysts in hydrotreating process: benefits and developments. Am. J. Oil Chem. Technol., 13–21, ISSN: Online: 2326-6589 (2013)Google Scholar
  4. 4.
    Chaudhuri, U.R.: Fundamentals of Petroleum and Petrochemical Engineering, Chemical Industries Series 130. Taylor & Francis Group, CRC Press, USA (2010)CrossRefGoogle Scholar
  5. 5.
    Heinrich, G.; Kasztelan, S.: Hydrotreating. In: Leprince, P. (ed.) Conversion Processes, pp. 533–573. Technip, Paris (2001)Google Scholar
  6. 6.
    Rana, M.S.; Rufino, N.; Jacques, L.: Competitive effects of nitrogen and sulfur content on activity of hydrotreating CoMo/Al\(_{2}\)O\(_{3}\) catalysts: a batch reactor study. Catal. Today 98, 67–74 (2004)CrossRefGoogle Scholar
  7. 7.
    Deng, Z.; Wang, T.; Zhanwen, W.: Hydrodesulfurization of diesel in a slurry reactor. Chem. Eng. Sci. 65, 480–486 (2010)CrossRefGoogle Scholar
  8. 8.
    Farag, H.; Mochida, I.: A comparative kinetic study on ultra-deep hydrodesulfurization of pre-treated gas oil over nanosized MoS2, CoMo-sulfide, and commercial CoMo/Al\(_{2}\)O\(_{3}\) catalysts. J. Colloid Interface Sci. 372(1), 121–129 (2012)CrossRefGoogle Scholar
  9. 9.
    Liu, Y.; Zou, Y.: Effects of aromatic cycle oils on performance of residue hydrotreating. Korean J. Chem. Eng. 30(11), 1985–1989 (2013)CrossRefGoogle Scholar
  10. 10.
    Ferreira, C.; Tayakout-Fayolle, M.; Guibard, I.; Lemos, F.; Toulhoat, H.; Ribeiro, F.R.: Hydrodesulfurization and hydrodemetallization of different origin vacuum residues: new modeling approach. Fuel 129, 267–277 (2014)CrossRefGoogle Scholar
  11. 11.
    Klimov, O.V.; Nadeina, K.A.; Dik, P.P.; Koryakina, G.I.; Kazakov, M.O.; Budukva, S.V.; Gerasimov, EYu; Prosvirin, I.P.; Kochubey, D.I.; Noskov, A.S.: CoNiMo/Al\(_{2}\)O\(_{3}\) catalysts for deep hydrotreatment of vacuum gas oil. Catal. Today 271, 56–63 (2016)CrossRefGoogle Scholar
  12. 12.
    Abid, M.F.; Abdullah, M.K.; Ali, S.M.: Experimental study on catalyst deactivation by nitrogen compounds in a hydroprocessing reactor. Arab. J. Sci. Eng. (2017).  https://doi.org/10.1007/s13369-017-2480-8.CrossRefGoogle Scholar
  13. 13.
    Lappas, A.A.; Budisteanu, R.; Drakaki, K.; Vasalos, I.A.: Production of low aromatics and low sulfur diesel in a hydrodesulfurization (HDS) pilot plant unit. Global Nest Int. J. 1(1), 15–22 (1999)Google Scholar
  14. 14.
    Bej, S.K.; Dalai, A.K.; Adjaye, J.: Comparison of hydrodenitrogenation of basic and nonbasic nitrogen compounds present in oil sands derived heavy gas oil. Energy Fuels 15, 375–383 (2001)Google Scholar
  15. 15.
    Kundu, A.; Nigam, K.D.P.; Duquenne, A.M.; Delmas, H.: Recent developments in hydroprocessing reactions. Rev. Chem. Eng. 19, 531–605 (2003)CrossRefGoogle Scholar
  16. 16.
    Cooper, B.H.; Knudsen, K.G.: Ultra deep desulfurization of diesel: how an understanding of the underlying kinetics can reduce investment costs. In: Hsu, C.S., Robinson, P.R. (eds.) Practical Advances in Petroleum Processing. Springer, Berlin (2006)Google Scholar
  17. 17.
    Varga, Z.; Hancsok, J.: Deep hydrodesulphurization of gas oils. Petrol. Coal 45(3–4), 135–141 (2003)Google Scholar
  18. 18.
    Bharvani, R.R.; Henderson, R.S.: Revamp your hydrotreater for deep desulfurization: clean fuels. Hydrocarb. Process. 81, 61–64 (2002)Google Scholar
  19. 19.
    Kung H.A.: Fluidized bed hydrodesulfurization of coal derived liquids, Ph.D. thesis, Department of Mining and Fuels Engineering, University of Utah (December 1980)Google Scholar
  20. 20.
    Chen, J.; Yang, H.; Ring, Z.: HDS kinetics study of dibenzothiophenic compounds in LCO. Catal. Today 98, 227–233 (2004)CrossRefGoogle Scholar
  21. 21.
    Whitehurst, D.; Farag, H.; Nagamatsu, T.; Sakanishi, K.; Mochida, I.: Assessment of limitations and potentials for improvement in deep desulfurization through detailed kinetic analysis of mechanistic pathways. Catal. Today 45, 299–305 (1998)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • Mohammad F. Abid
    • 1
  • Shakir M. Ahmed
    • 2
  • Waleed H. Abohameed
    • 1
  • Salah M. Ali
    • 3
  1. 1.Department of Chemical EngineeringUniversity of TechnologyBaghdadIraq
  2. 2.SCOPMinistry of OilBaghdadIraq
  3. 3.Petroleum Research and Development CenterMinistry of OilBaghdadIraq

Personalised recommendations