Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 9, pp 4635–4647 | Cite as

Measured Cutting Forces in the Turning of Prismatic Parts at Different Spindle Speeds and Side Cutting Edge Angles

  • Erkan Öztürk
  • Kemal Yıldızlı
Research Article - Mechanical Engineering
  • 74 Downloads

Abstract

This study attempted to measure three cutting force components simultaneously for prismatic parts and determine the force-time characteristics until face turning was finished. A calibrated dynamometer was used in the turning experiments. The experiments for the aluminum alloy and brass workpieces were performed at different side cutting edge angles (SCEAs) for three different spindle speeds. The turning finishing processes of the prismatic parts were also monitored successfully. The cutting speed had a remarkable effect on the quality of data acquisition, but the SCEA did not. The scatter width of all forces increased with decreasing cutting speed, but the SCEA was not effective. Three forces generally exhibited familiar characteristic with increment in the SCEA for aluminum and brass workpieces. Furthermore, the cutting force amplitudes were perceived to be higher in cylindrical machining regions than impact machining regions. The \({F}_{\mathrm{c}}\) and \({F}_{\mathrm{r}}\) indicated similar self-trends for both metals during total machining processes.

Keywords

Prismatic parts Turning Machining Cutting forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was financially supported by the Turkish Council of Higher Education under scholar grant: ÖYP-1919-020. The authors thank “Samsun Ilkadim Teknik ve Endüstri Meslek Lisesi” for using their facilities in our experiments. Special thanks to Nurettin ÜSTKOYUNCU, assistant professor at Electric Electronical Engineering, Department of Erciyes University, for his contributions of the strain gage based dynamometer design.

References

  1. 1.
    Yaldiz, S.; Unsacar, F.: A dynamometer design for measurement the cutting forces on turning. Measurement 39(1), 80–89 (2006)CrossRefGoogle Scholar
  2. 2.
    Korkut, I.: A dynamometer design and its construction for milling operation. Mater. Des. 24(8), 631–637 (2003)CrossRefGoogle Scholar
  3. 3.
    Gunay, M.; Aslan, E.; Korkut, I.; Seker, U.: Investigation of the effect of rake angle on main cutting force. Int. J. Mach. Tool Manuf. 44(9), 953–959 (2004)CrossRefGoogle Scholar
  4. 4.
    Gunay, M.; Korkut, I.; Aslan, E.; Seker, U.: Experimental investigation of the effect of cutting tool rake angle on main cutting force. J. Mater. Process. Technol. 166(1), 44–49 (2005)CrossRefGoogle Scholar
  5. 5.
    Gunay, M.; Seker, U.; Sur, G.: Design and construction of a dynamometer to evaluate the influence of cutting tool rake angle on cutting forces. Mater. Des. 27(10), 1097–1101 (2006)CrossRefGoogle Scholar
  6. 6.
    Radovanovic, M.; Dasic, P.; Jankovic, P.: Experimental determination of cutting force by longitudinal turning of C60E steel. Rom. Tech. Sci. Acad. 2, 113–119 (2006)Google Scholar
  7. 7.
    Saglam, H.; Unsacar, F.; Yaldiz, S.: Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature. Int. J. Mach. Tool Manuf. 46(2), 132–141 (2006)CrossRefGoogle Scholar
  8. 8.
    Saglam, H.; Yaldiz, S.; Unsacar, F.: The effect of tool geometry and cutting speed on main cutting force and tool tip temperature. Mater. Des. 28(1), 101–111 (2007)CrossRefGoogle Scholar
  9. 9.
    Bajic, D.; Lela, B.; Cukor, G.: Examination and modelling of the influence of cutting parameters on the cutting force and the surface roughness in longitudinal turning. Stroj Vestn-J. Mech. E 54(5), 322–333 (2008)Google Scholar
  10. 10.
    Thiele, J.D.; Melkote, S.N.: Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J. Mater. Process. Technol. 94(2–3), 216–226 (1999)CrossRefGoogle Scholar
  11. 11.
    Lin, W.S.; Lee, B.Y.; Wu, C.L.: Modeling the surface roughness and cutting force for turning. J. Mater. Process. Technol. 108(3), 286–293 (2001)CrossRefGoogle Scholar
  12. 12.
    Habalı, K.; Gökkaya, H.; Sert, H.: Experimental investigation of the effects of cutting tool coating materials on surface roughness in machining of AISI 1040 steel. J. Polytech. 9(1), 35–38 (2006)Google Scholar
  13. 13.
    Nalbant, M.; Altin, A.; Gokkaya, H.: The effect of coating material and geometry of cutting tool and cutting speed on machinability properties of Inconel 718 super alloys. Mater Design 28(5), 1719–1724 (2007)CrossRefGoogle Scholar
  14. 14.
    Korkut, I.; Boy, M.: Experimental examination of main cutting force and surface roughness depending on cutting parameters. Stroj Vestn-J. Mech. E 54(7–8), 531–538 (2008)Google Scholar
  15. 15.
    Asano, K.: Turning machinability of short alumina fiber reinforced aluminum alloy composite using carbide tool. Mater. Trans. 56(7), 1120–1126 (2015)CrossRefGoogle Scholar
  16. 16.
    Dinesh, S.; Senthilkumar, V.; Asokan, P.; Arulkirubakaran, D.: Effect of cryogenic cooling on machinability and surface quality of bio-degradable ZK60 Mg alloy. Mater. Des. 87, 1030–1036 (2015)CrossRefGoogle Scholar
  17. 17.
    Razavykia, A.; Farahany, S.; Yusof, N.M.: Evaluation of cutting force and surface roughness in the dry turning of Al–Mg\(_{2}\)i in-situ metal matrix composite inoculated with bismuth using DOE approach. Measurement 76, 170–182 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, X.W.; Cheng, K.; Webb, D.; Luo, X.C.: Prediction of cutting force distribution and its influence on dimensional accuracy in peripheral milling. Int. J. Mach. Tool Manuf. 42(7), 791–800 (2002)CrossRefGoogle Scholar
  19. 19.
    Topal, E.S.; Cogun, C.: A cutting force induced error elimination method for turning operations. J. Mater. Process. Technol. 170(1–2), 192–203 (2005)CrossRefGoogle Scholar
  20. 20.
    Cakir, M.C.; Isik, Y.: Detecting tool breakage in turning AISI 1050 steel using coated and uncoated cutting tools. J. Mater. Process. Technol. 159(2), 191–198 (2005)CrossRefGoogle Scholar
  21. 21.
    Denkena, B.; Lucas, A.; Bassett, E.: Effects of the cutting edge microgeometry on tool wear and its thermomechanical load. CIRP Ann. Manuf. Technol. 60(1), 73–76 (2011)CrossRefGoogle Scholar
  22. 22.
    Karpuschewski, B.; Schmidt, K.; Beno, J.; Mankova, I.; Frohmuller, R.; Prilukova, J.: An approach to the microscopic study of wear mechanisms during hard turning with coated ceramics. Wear 342, 222–233 (2015)CrossRefGoogle Scholar
  23. 23.
    Lin, H.S.; Wang, C.Y.; Yuan, Y.H.; Chen, Z.H.; Wang, Q.M.; Xiong, W.Q.: Tool wear in Ti–6Al–4V alloy turning under oils on water cooling comparing with cryogenic air mixed with minimal quantity lubrication. Int. J. Adv. Manuf. Technol. 81(1–4), 87–101 (2015)CrossRefGoogle Scholar
  24. 24.
    Milfelner, A.; Cus, F.; Balic, J.: An overview of data acquisition system for cutting force measuring and optimization in milling. J. Mater. Process. Technol. 164, 1281–1288 (2005)CrossRefGoogle Scholar
  25. 25.
    Kong, M.C.; Axinte, D.A.; Wilson, B.; Marinescu, I.; Allen, J.; Raffles, M.; Weston, S.: An innovative design of multi-task dynamometers for turning operations. Proc. Inst. Mech. Eng. B J. Eng. 226(B6), 1118–1124 (2012)CrossRefGoogle Scholar
  26. 26.
    Ayomoh, M.K.O.; Abou-EI-Hossein, K.A.; Olufayo, O.A.: Cutting force prediction for single point diamond tool-tip. In: 2013 6th Robotics and Mechatronics Conference (Robmech), pp. 123–128 (2013)Google Scholar
  27. 27.
    Teti, R.; Jemielniak, K.; O’Donnell, G.; Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. Manuf. Technol. 59(2), 717–739 (2010).  https://doi.org/10.1016/j.cirp.2010.05.010 CrossRefGoogle Scholar
  28. 28.
    Yaldiz, S.; Unsacar, F.: Design, development and testing of a turning dynamometer for cutting force measurement. Mater. Des. 27(10), 839–846 (2006).  https://doi.org/10.1016/j.matdes.2005.04.001 CrossRefGoogle Scholar
  29. 29.
    Panzera, T.H.; Souza, P.R.; Rubio, J.C.C.; Abrao, A.M.; Mansur, T.R.: Development of a three-component dynamometer to measure turning force. Int. J. Adv. Manuf. Technol. 62(9–12), 913–922 (2012).  https://doi.org/10.1007/s00170-011-3866-5 CrossRefGoogle Scholar
  30. 30.
    Zhao, Y.; Zhao, Y.L.; Liang, S.B.; Zhou, G.W.: A high performance sensor for triaxial cutting force measurement in turning. Sensors Basel 15(4), 7969–7984 (2015).  https://doi.org/10.3390/s150407969 CrossRefGoogle Scholar
  31. 31.
    Hanif, M.I.; Aamir, M.; Muhammad, R.; Ahmed, N.; Maqsood, S.: Design and development of low cost compact force dynamometer for cutting forces measurements and process parameters optimization in turning applications. Int. J. Innov. Sci. 3(9), 306–3016 (2015)Google Scholar
  32. 32.
    Öztürk, E.; Yıldızlı, K.: A new static calibration methodology for strain gage integrated dynamometers. Int. J. Adv. Manuf. Technol. 91(5), 1823–1838 (2017)Google Scholar
  33. 33.
    Bouzakis, K.D.; Michailidis, N.; Skordaris, G.; Bouzakis, E.; Biermann, D.; M’Saoubi, R.: Cutting with coated tools: coating technologies, characterization methods and performance optimization. CIRP Ann. Manuf. Technol. 61(2), 703–723 (2012)CrossRefGoogle Scholar
  34. 34.
    Kurt, A.; Yalcin, B.; Yilmaz, N.: The cutting tool stresses in finish turning of hardened steel with mixed ceramic tool. Int. J. Adv. Manuf. Technol. 80(1–4), 315–325 (2015)CrossRefGoogle Scholar
  35. 35.
    Nalbant, M.; Altin, A.; Gokkaya, H.: The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Mater. Des. 28(4), 1334–1338 (2007)CrossRefGoogle Scholar
  36. 36.
    Dorlin, T.; Fromentin, G.; Costes, J.P.: Analysis and modelling of the contact radius effect on the cutting forces in cylindrical and face turning of Ti6Al4V titanium alloy. Proc. CIRP 31, 185–190 (2015).  https://doi.org/10.1016/j.procir.2015.03.017 CrossRefGoogle Scholar
  37. 37.
    Su, Y.; Li, Z.; Li, L.; Wang, J.; Gao, H.; Wang, G.: Cutting performance of micro-textured polycrystalline diamond tool in dry cutting. J. Manuf. Process. 27, 1–7 (2017).  https://doi.org/10.1016/j.jmapro.2017.03.013 CrossRefGoogle Scholar
  38. 38.
    Cui, X.B.; Zhao, J.; Zhou, Y.H.; Pei, Z.Q.: Cutting forces and tool wear in intermittent turning processes with Al\(_{2}\)O\(_{3}\)-based ceramic tools. Key Eng. Mater. 499, 205–210 (2012).  https://doi.org/10.4028/www.scientific.net/KEM.499.205 CrossRefGoogle Scholar
  39. 39.
    Gutnichenko, O.; Agic, A.; Stahl, J.E.: Modeling of force build-up process and optimization of tool geometry when intermittent turning. In: 16th CIRP Conference on Modelling of Machining Operations (16th Cirp Cmmo), vol. 58, pp. 393–398 (2017).  https://doi.org/10.1016/j.procir.2017.03.241
  40. 40.
  41. 41.
    Günay, M.: Talaş Kaldırma İşlemlerinde Kesici Takım Talaş Açısının Kesme Kuvvetlerine Etkisinin Deneysel Olarak İncelemesi. Gazi University (2003)Google Scholar
  42. 42.
    Öztürk, E.: Prizmatik Parçaların İşlenmesinde Kesme Kuvvetlerinin Analizi. Ondokuz Mayıs University (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Engineering FacultyOndokuz Mayıs UniversityAtakumTurkey

Personalised recommendations