Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1757–1767 | Cite as

A Domain Decomposition Approach for Preconditioning in Massive MIMO Systems

  • Abdelouahab BentrciaEmail author
Research Article - Electrical Engineering
  • 20 Downloads

Abstract

In this work, we investigate devising efficient preconditioners for communication systems based on domain decomposition techniques. In particular, we focus on the uplink of a massive MIMO system and exploit the special structure of the channel cross-correlation matrix to derive improved preconditioners based on Schwarz preconditioning. Up to our knowledge, this is the first attempt to make use of domain decomposition techniques in the design of efficient preconditioners for communication systems. Two additive Schwarz preconditioners are investigated and tested within the context of cancelling inter-antenna interference in massive MIMO systems using two recently proposed parallel interference cancellation detectors. Simulation results reveal substantial improvement in convergence speed compared to the conventional Jacobi and block Jacobi preconditioning.

Keywords

Preconditioning MIMO Domain decomposition Schwarz PIC IAI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsson, E.G.; Tufvesson, F.; Edfors, O.; Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)CrossRefGoogle Scholar
  2. 2.
    Honig, M.L.: Advances in Multiuser Detection, Wiley Series in Telecommunications and Signal Processing. ISBN: 9780470473801, Publication Date: 19-08-2009Google Scholar
  3. 3.
    Yang, S.; Hanzo, L.: Fifty years of MIMO detection: the road to large-scale MIMOs. IEEE Commun. Surv. Tutor. 17(4), 941–1988 (2015)CrossRefGoogle Scholar
  4. 4.
    Wu, M.; Yin, B.; Vosoughi, A.; Studer, C.; Cavallaro, J. R.; Dick, C.: Approximate matrix inversion for high throughput data detection in the large scale MIMO uplink. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2013)Google Scholar
  5. 5.
    Wu, M.; Yin, B.; Wang, G.; Dick, C.; Cavallaro, J.R.; Studer, C.: Large-scale MIMO detection for 3GPP LTE: algorithms and FPGA implementations. IEEE J. Sel. Top. Signal Process. 8(5), 916–929 (2014)CrossRefGoogle Scholar
  6. 6.
    Ancora, A.; Montalbano, G.; Slock, D.T.M.: Preconditioned iterative inter-carrier interference cancellation for OFDM reception in rapidly varying channels. In: Proceedings of the ICASSP, pp. 3066–3069 (2010)Google Scholar
  7. 7.
    Bentrcia, A.; Alshebeili, S.: New linear PIC detectors based on non-monotone line-search techniques. Signal Process 92(12), 3085–3090, ISSN 0165-1684 (2012).  https://doi.org/10.1016/j.sigpro.2012.06.019
  8. 8.
    Benzi, Michele: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(2), 418–477 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Xhafa, F.; Pllana, S.: Programming Multi-core and Many-core Computing Systems: Wiley Series on Parallel and Distributed Computing. Wiley-Blackwell, New York (2014)Google Scholar
  10. 10.
    Korneev, V.G.; Langer, U.: Domain decomposition methods and preconditioning. Encycl. Comput. Mech. 1, 22 (2004)Google Scholar
  11. 11.
    Giraud, L.; Tuminaro, R. S.: Algebraic domain decomposition preconditioners. Technical Report ENSEEIHT-IRIT RT/APO/06/07, Oct (2006)Google Scholar
  12. 12.
    Okrouhl’ık, M.: Numerical methods in computational mechanics, Institute of Thermomechanics, Prague 2008, Last revision 23 Jan 2012Google Scholar
  13. 13.
    Gander, M.J.: Schwarz methods over the course of time. Electron. Trans. Numer. Anal. 31, 228–255 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Griebel, M.; Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70(2), 163–180 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nabben, R.: Comparisons between multiplicative and additive Schwarz iterations in domain decomposition methods. Numer. Math. 95(1), 145–162 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bai, Zhong-Zhi: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154(1), 195–214 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Theory, An Algebraic Schwarz: Technical Report CRPC-94-12. Applied Mathematics and CRPC, California Institute of Technology (1994)Google Scholar
  18. 18.
    van Zelst, A.; Hammerschmidt, J.S.: A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In: proceedings of the URSI XXVIIth General Assembly. Maastricht, The Netherlands: URSI (2002)Google Scholar
  19. 19.
    Bentrcia, A.; Zerguine, Azzedine: A new linear group-wise parallel interference cancellation detector. Wirel. Pers. Commun. 49(1), 23–34 (2009)CrossRefGoogle Scholar
  20. 20.
    Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003).  https://doi.org/10.1137/1.9780898718003
  21. 21.
    Smith, B.: Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (2004)Google Scholar
  22. 22.
    Mathew, T.P.A.: Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Vol. 61 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2008)Google Scholar
  23. 23.
    Yu, T.; Xiao, Z.; Wong, M.D. F.: Efficient parallel power grid analysis via Additive Schwarz Method. In: ICCAD, pp. 399–406 (2012)Google Scholar
  24. 24.
    C-Cai, X.; Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Loisel, Sébastien; Nabben, Reinhard; Szyld, Daniel B.: On hybrid multigrid-Schwarz algorithms. J. Sci. Comput. 36(2), 165–175 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bentrcia, Abdelouahab; Alshebeili, Saleh: Competitive linear parallel interference cancellation detection based on monotone line-search techniques. IET Signal Process. 8(5), 521–529 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.College of Applied Engineering (Muzahmia Branch)King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations