Skip to main content

Advertisement

Log in

Efficiency Improvement in Induction Motor-Driven Solar Water Pumping System Using Golden Section Search Algorithm

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The paper applies a maximum power point tracking (MPPT) technique for stand-alone photovoltaic water pumping system to improve the overall operating efficiency. This technique is based on golden section search (GSS) optimization method. To the authors’ best knowledge, this is the first attempt to apply it to such a problem. Compared to MPPT tracking method such as perturb and observe (P&O), GSS technique offers two advantages, namely fastness and perturbation-free which both affect the overall and instantaneous efficiency of the solar water pumping system. The maximum power transfer from the photovoltaic panel to the centrifugal pump is ensured by optimal selection of induction motor’s operating speed. This allows improving the global efficiency of the water pumping system that is maximum water flow rate with respect to the solar intensity. Modeling of solar water pumping system is presented then simulated using MATLAB/Simulink under variable irradiance to demonstrate the effectiveness of the proposed architecture. Results show that GSS-based MPPT offers better dynamic efficiency without altering much the easiness and simplicity of the implementation compared to the conventional P&O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Diode factor

d :

Subscript of direct axis

D :

Chopper duty cycle

\(E_\mathrm{stc}\) :

Irradiance value at STC

\(E_\mathrm{g}\) :

Band-gap energy

F :

Friction coefficient

\(G_{1}, G_{2}\) :

Golden section values

H :

Manometric head or height

i :

Motor current

I :

Photocurrent

\(I_\mathrm{ph}\) :

PVG current

\(I_\mathrm{scn}\) :

Nominal short-circuit current at STC

\(I_0\) :

Reverse saturation current

\(I_\mathrm{0n}\) :

Nominal saturation current

j :

Total moment of inertia

k :

Boltzmann’s constant

\(K_\mathrm{p}\) :

Proportionality constant

\(L_\mathrm{s}, L_\mathrm{r},L_\mathrm{m}\) :

Stator, rotor and mutual inductance, respectively

\(N_\mathrm{s}\) :

Number of cells per module

\(N_\mathrm{par}\) :

Number of strings constituting the PVG

\(N_\mathrm{ser}\) :

Number of modules per string

p :

Number of pole pairs

P :

Hydraulic power

\(q_\mathrm{e}\) :

Electron charge

Q :

Water flow rate

q :

Subscript of transverse axis

r :

Subscript of rotor

\(R_\mathrm{s}\) :

Series resistance

\(R_\mathrm{sh}\) :

Parallel resistance

s :

Subscript of stator

T :

Cell temperature.

\(T_\mathrm{em}\) :

Electromagnetic torque

\(T_\mathrm{L}\) :

Pump torque

v :

Motor voltage

V :

PVG voltage

\(V_\mathrm{t}\) :

Thermal voltage

\(\alpha _\mathrm{i}\) :

Short-circuit current coefficient

\(\alpha _\mathrm{v}\) :

Open-circuit voltage coefficient

\(\varphi \) :

Magnetic flux

\(\omega _\mathrm{e}\) :

Speed of rotating reference frame

\(\varOmega _\mathrm{r}\) :

Mechanical rotor speed

\(\sigma \) :

Total leakage coefficient

\(\rho \) :

Golden ratio

\(\eta \) :

Efficiency

References

  1. Bouzidi, B.: New sizing method of PV water pumping systems. Sustain. Energy Technol. Assess. 4, 1–10 (2013). https://doi.org/10.1016/j.seta.2013.08.004

    MathSciNet  Google Scholar 

  2. Meah, K.; Fletcher, S.; Ula, S.: Solar photovoltaic water pumping for remote locations. Renew. Sustain. Energy Rev. 12(2), 472–87 (2008). https://doi.org/10.1016/j.rser.2006.10.008

    Article  Google Scholar 

  3. Gopal, C.; Mohanraj, M.; Chandramohan, P.; Chandrasekar, P.: Renewable energy source water pumping systems—a literature review. Renew. Sustain. Energy Rev. 25, 351–370 (2013). https://doi.org/10.1016/j.rser.2013.04.012

    Article  Google Scholar 

  4. Chandel, S.S.; Nagaraju Naik, M.; Chandel, Rahul: Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renew. Sustain. Energy Rev. 49, 1084–99 (2015). https://doi.org/10.1016/j.rser.2015.04.083

    Article  Google Scholar 

  5. Nabil, M.; Allam, S.M.; Rashad, E.M.: Performance improvement of a photovoltaic pumping system using a synchronous reluctance motor. Electr. Power Compon. Syst. 41, 447–64 (2013). https://doi.org/10.1080/15325008.2012.749554

    Article  Google Scholar 

  6. Badescu, V.: Time dependent model of a complex PV water pumping system. Renew. Energy 28(4), 543–60 (2003). https://doi.org/10.1016/S0960-1481(02)00069-1

    Article  Google Scholar 

  7. Kini, P.G.; Bensal, R.C.; Aithal, R.S.: Performance analysis of centrifugal pumps subjected to voltage variation und unbalance. IEEE Trans. Ind. Electron. 55, 562–69 (2008). https://doi.org/10.1109/TIE.2007.911947

    Article  Google Scholar 

  8. Thierry, M.; Christian, G.; Charles, J.; Benoît, R.: A simplified but accurate prevision method for along the sun PV pumping systems. Sol. Energy 82(11), 1009–20 (2008). https://doi.org/10.1016/j.solener.2008.05.005

    Article  Google Scholar 

  9. Kolhe, K.; Joshi, J.C.; Kothari, D.P.: Performance analysis of a directly coupled photovoltaic water-pumping system. IEEE Trans. Energy Convers. 19(3), 613–18 (2004). https://doi.org/10.1109/TEC.2004.827032

    Article  Google Scholar 

  10. Arrouf, M.; Bouguechal, N.: Vector control of an induction motor fed by a photovoltaic generator. Appl. Energy 74(1–2), 159–167 (2003). https://doi.org/10.1016/S0306-2619(02)00142-3

    Article  Google Scholar 

  11. Mimouni, M.; Mansouri, M.; Benghanem, B.; Annabi, M.: Vectorial command of an asynchronous motor fed by a photovoltaic generator. Renew. Energy 29(3), 433–42 (2003). https://doi.org/10.1016/S0960-1481(03)00226-X

    Article  Google Scholar 

  12. Arribas, J.; Gonzalez, C.: Optimal vector control of pumping and ventilation induction motors drives. IEEE Trans. Ind. Electron. 49(4), 889–95 (2002). https://doi.org/10.1109/TIE.2002.801240

    Article  Google Scholar 

  13. Vitorine, M.A.; Correa, M.B.R.; Jacobina, C.B.; Lima, A.M.N.: An effective induction motor control for photovoltaic pumping. IEEE Trans. Ind. Electron. 58(4), 1162–70 (2011). https://doi.org/10.1109/TIE.2010.2054053

    Article  Google Scholar 

  14. Campana, P.E.; Li, H.; Yan, J.: Dynamic modelling of a PV pumping system with special consideration on water demand. Appl. Energy 112, 635–45 (2013). https://doi.org/10.1016/j.apenergy.2012.12.073

    Article  Google Scholar 

  15. Bhatnagar, P.; Nema, R.K.: Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications. Renew. Sustain. Energy Rev. 23, 224–41 (2013). https://doi.org/10.1016/j.rser.2013.02.011

    Article  Google Scholar 

  16. Ishaque, K.; Salem, Z.: A review of maximum power point tracking control techniques of PV systems for uniform insolation and partial shading condition. Renew. Sustain. Energy Rev. 19, 475–88 (2013). https://doi.org/10.1016/j.rser.2012.11.032

    Article  Google Scholar 

  17. Muhsen, D.H.; Khatib, T.; Nagi, F.: A review of photovoltaic water pumping system designing methods, control strategies and field performance. Renew. Sustain. Energy Rev. 68, 70–86 (2017). https://doi.org/10.1016/j.rser.2016.09.129

    Article  Google Scholar 

  18. Elgendy, M.A.; Zahawi, B.; Atkinson, D.J.: Comparison of directly connected and constant voltage controlled photovoltaic pumping system. IEEE Trans. Sustain. Energy 1(3), 184–92 (2010). https://doi.org/10.1109/TSTE.2010.2052936

    Article  Google Scholar 

  19. Elgendy, M.A.; Zahawi, B.; Atkinson, D.J.: Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 3(1), 21–33 (2013). https://doi.org/10.1109/TSTE.2011.2168245

    Article  Google Scholar 

  20. Elgendy, M.A.; Zahawi, B.; Atkinson, D.J.: Assessment of incremental conductance maximum power point tracking algorithm. IEEE Trans. Sustain. Energy 4(1), 108–17 (2013). https://doi.org/10.1109/TSTE.2012.2202698

    Article  Google Scholar 

  21. Benlarbi, K.; Mokrani, L.; Nait-Said, M.S.: A fuzzy global efficiency optimization of a photovoltaic water pumping system. Sol. Energy 77(2), 203–16 (2004). https://doi.org/10.1016/j.solener.2004.03.025

    Article  Google Scholar 

  22. Kumar, B.; Chauhan, T.K.; Shrivastava, V.: A comparative study of maximum power point tracking methods for a photovoltaic-based water pumping system. Int. J. Sustain. Energy 33(4), 797–810 (2014). https://doi.org/10.1080/14786451.2013.769990

    Article  Google Scholar 

  23. Mosaffari Niapour, S.A.K.H.; Danyali, S.; Sharifian, M.B.B.; Feyzi, M.R.: Brushless DC motor drives supplied by PV power system based on Z-source inverter and FL-IC MPPT controller. Energy Convers. Manag. 52(8–9), 3043–59 (2011). https://doi.org/10.1016/j.enconman.2011.04.016

    Article  Google Scholar 

  24. Biji, G.: Modelling and simulation of PV based pumping system for maximum efficiency. In: 2012 IEEE International Conference on Power, Signals, Controls and Computation, EPSCICON, pp. 1–6. https://doi.org/10.1109/EPSCICON.2012.6175266.

  25. Djeriou, S.; Kheldoun, A.; Sadouni, R.: Fuzzy indirect field oriented control of a dual star induction motor water pumping system fed by photovoltaic generator. Eng. Int. Syst. 23(2), 63–76 (2015)

    Google Scholar 

  26. Villalva, M.G.; Gazoli, J.R.; E Ruppert, F.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009). https://doi.org/10.1109/TPEL.2009.2013862

    Article  Google Scholar 

  27. Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E.: Modeling and circuit-based simulation of photovoltaic arrays. Braz. J. Power Electron. 14, 35–45 (2009)

    Google Scholar 

  28. Tiwari, Arunendra K.; Kalamkar, Vilas R.: Performance investigations of solar water pumping system using helical pump under the outdoor condition of Nagpur. India Renew. Energy 97, 737–45 (2016)

    Article  Google Scholar 

  29. Rekioua, D.; Matagne, E.: Optimization of Photovoltaic Power Systems Modelization Simulation and Control. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2403-0

    Book  Google Scholar 

  30. Arrouf, M.; Bouguechal, N.: Vector control of an induction motor fed by a photovoltaic generator. Appl. Energy 74(1–2), 159–167 (2003). https://doi.org/10.1016/S0306-2619(02)00142-3

    Article  Google Scholar 

  31. Kumar, R.; Singh, B.; Chandra, A.: Al-haddad K. Solar PV array water pumping using BLDC motor drive with boost-buck converter. In: Proceedings of the IEEE Energy Conversion Congress and Exposition ECCE, pp. 5741–5748, (2015). https://doi.org/10.1109/ECCE.2015.7310466

  32. Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.: Sizing and modelling of photovoltaic water pumping system. Int. J. Sustain. Energy, 1–12, (2017). https://doi.org/10.1080/14786451.2016.1276906

  33. Thierry, M.; Christian, G.; Charles, J.; Benoît, R.: A simplified but accurate prevision method for along the sun PV pumping systems. Sol. Energy 82(11), 1009–1020 (2008). https://doi.org/10.1016/j.solener.2008.05.005

    Article  Google Scholar 

  34. Rawat, R.; Kaushik, S.C.; Lamba, R.: A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system. Renew. Sustain. Energy Rev. 57, 1506–1519 (2016). https://doi.org/10.1016/j.rser.2015.12.228

    Article  Google Scholar 

  35. Piegari, L.; Rizzo, R.: Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renew. Power Gener. 4(4), 317–328 (2010). https://doi.org/10.1049/iet-rpg.2009.0006

    Article  Google Scholar 

  36. Kheldoun, A.; Bradai, R.; Boukenoui, R.; Mellit, A.: A new Golden Section method-based maximum power point tracking algorithm for photovoltaic systems. Energy Convers. Manag. 111(1), 125–136 (2016). https://doi.org/10.1016/j.enconman.2015.12.039

    Article  Google Scholar 

  37. EN50530: Overall efficiency of grid connected photovoltaic inverters (2010)

  38. Femia, Nicola; Petrone, Giovanni; Spagnuolo, Giovanni; Vitelli, Massimo: Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

Dr. A. Mellit expresses a special acknowledgment to the International Centre for Theoretical Physics (ICTP), Trieste, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mellit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djeriou, S., Kheldoun, A. & Mellit, A. Efficiency Improvement in Induction Motor-Driven Solar Water Pumping System Using Golden Section Search Algorithm. Arab J Sci Eng 43, 3199–3211 (2018). https://doi.org/10.1007/s13369-017-2972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2972-6

Keywords

Navigation