Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 1, pp 1–22 | Cite as

Carbon Dioxide Corrosion Inhibitors: A review

  • Bashir J. Usman
  • Shaikh A. AliEmail author
Review Article – Chemistry

Abstract

This article intends to summarize the corrosion inhibition of pipeline steels in aqueous carbon dioxide (\(\hbox {CO}_{2})\) environments. The emphasis is on various inhibitors, especially imidazolines used to mitigate mild steel corrosion under various conditions. The most predominant and feared type of corrosion attack in oil and gas industries is caused by \(\hbox {CO}_{2}\). The application of corrosion inhibitors is considered the most suitable method of combating \(\hbox {CO}_{2 }\) corrosion of steel pipelines. The prime objective of this work is to summarize carbon dioxide corrosion inhibitors so far tested and reported against this type of attack. The information presented in this article is of significance for oil and gas industries that use steel pipeline for the transportation of oil and gas products. Furthermore, this review would be helpful in designing better inhibitors for the mitigation of \(\hbox {CO}_{2}\) corrosion in oil and gas industries.

Keywords

\(\hbox {CO}_{2}\) corrosion Pipeline Inhibition Mild steel Corrosion inhibitors Imidazolines 

Abbreviations

AFM

Atomic frequency modulation

CI

Corrosion inhibitor

CR

Corrosion rate

CS

Carbon steel

CMC

Critical micelle concentration

EDX

Energy-dispersive X-ray

EIS

Electrochemical impedance spectroscopy

EFM

Electrochemical frequency modulation

FTIR

Fourier transform infrared spectroscopy

HF

Higher frequency

IE

Inhibitor efficiency

IM

Imidazoline

LPR

Linear polarization

LSW

Linear sweep voltammetry

MF

Medium frequency

MS

Mild steel

PDP

Potentiodynamic polarization

PM-IRRS

Polarization modulation-infrared reflection absorption spectroscopy

RDE

Rotating disk electrode

\({R}_{\mathrm{P }}\)

Polarization resistance

SAM

Self-assembled monolayer

SEM

Scanning electron microscopy

WL

Weight loss

XPS

X-ray photoelectron spectroscopy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finšgar, M.; Jackson, J.: Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci. 86, 17–41 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J.: MOFs for \(\text{ CO }_{2}\) capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chem. Commun. 49, 653–61 (2013)CrossRefGoogle Scholar
  3. 3.
    Farelas, F.; Galicia, M.; Brown, B.; Nesic, S.; Castaneda, H.: Evolution of dissolution processes at the interface of carbon steel corroding in a \(\text{ CO }_{2}\) environment studied by EIS. Corros. Sci. 52, 509–517 (2010)CrossRefGoogle Scholar
  4. 4.
    Popoola, L.; Grema, A.; Latinwo, G.; Gutti, B.; Balogun, A.: Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 4, 35 (2013)CrossRefGoogle Scholar
  5. 5.
    Sylyester, O.N.; Celestine, O.N.; Reuben, I.G.; Okechukwu, C.E.: Review of corrosion kinetics and thermodynamics of \(\text{ CO }_{2}\) and \(\text{ H }_{2}\text{ S }\) corrosion effects and associated prediction/evaluation on oil and gas pipeline system. Int. J. Sci. Technol. Res. 1, 156–162 (2012)Google Scholar
  6. 6.
    Al-Hasami, A.; Ren, S.; Tohidi, B.: \(\text{ CO }_{2}\) Injection for enhanced gas recovery and geo-storage: reservoir simulation and economics. In: SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers (2013)Google Scholar
  7. 7.
    López, D.A.; Pérez, T.; Simison, S.N.: The influence of microstructure and chemical composition of carbon and low alloy steels in \(\text{ CO }_{2}\) corrosion. A state-of-the-art appraisal. Mater. Des. 24, 561–575 (2003)CrossRefGoogle Scholar
  8. 8.
    Abd El-Lateef, H.M.; Abbasov, V.M.; Aliyeva, L.I.; Ismayilov, T.A.: Corrosion protection of steel pipelines against \(\text{ CO }_{2}\) corrosion—a review. Chem. J. 2, 52–63 (2012)CrossRefGoogle Scholar
  9. 9.
    Li, C.: Effect of corrosion inhibitor on water wetting and carbon dioxide corrosion in oil-water two-phase flow. (2009). www.corrosioncenter.ohiou.edu/documents/LI CHONG_thesis.pdf
  10. 10.
    Zhang, G.; Chen, C.; Lu, M.; Chai, C.; Wu, Y.: Evaluation of inhibition efficiency of an imidazoline derivative in \(\text{ CO }_{2}\)-containing aqueous solution. Mater. Chem. Phys. 105, 331–340 (2007)CrossRefGoogle Scholar
  11. 11.
    Kermani, M.B.; Morshed, A.: Carbon dioxide corrosion in oil and gas production—a compendium. Corrosion 59, 659–683 (2003)CrossRefGoogle Scholar
  12. 12.
    Villamizar, W.: \(\text{ CO }_{2}\) corrosion inhibition by hydroxyethyl, aminoethyl, and amidoethyl imidazolines in water-oil mixtures. J. Solid State Electrochem. 11, 619–629 (2007)CrossRefGoogle Scholar
  13. 13.
    Ueda, I.M.; Mukai, S.: \(\text{ CO }_{2}\) Corrosion behavior and mechanism of carbon and alloy steel. Corrosion/83, Article 45, NACE Houston (1983)Google Scholar
  14. 14.
    Dugstad, A.; Lunde, L.; Nesic, S.: Control of internal corrosion in multi-phase oil and gas pipelines. In: Prevention of Pipeline Corrosion, p. 18 (1994)Google Scholar
  15. 15.
    López, D.A.; Schreiner, W.H.; De Sánchez, S.R.; Simison, S.N.: The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization. Appl. Surf. Sci. 207, 69–85 (2003)CrossRefGoogle Scholar
  16. 16.
    Han, J.; Brown, B.N.; Nešić, S.: Investigation of the galvanic mechanism for localized carbon dioxide corrosion propagation using the artificial pit technique. Corrosion 66, 95003–95003-12 (2010)CrossRefGoogle Scholar
  17. 17.
    Videm, K.; Dugstad, A.: Corrosion of carbon steel in an aqueous carbon dioxide environment. I: solution effects. Mater. Perform. 28, 63–67 (1989)Google Scholar
  18. 18.
    Kermani, B.; Smith, L.: A Working Party Report on \(\text{ CO }_{2}\) Corrosion Control in Oil and Gas Production Design Considerations. Institute of Materials, London (1997)Google Scholar
  19. 19.
    Garcia-Arriaga, V.; Alvarez-Ramirez, J.; Amaya, M.; Sosa, E.: \(\text{ H }_{2}\text{ S }\) and \(\text{ O }_{2}\) influence on the corrosion of carbon steel immersed in a solution containing 3M diethanolamine. Corros. Sci. 52, 2268–2279 (2010)CrossRefGoogle Scholar
  20. 20.
    McCafferty, E.: Introduction to corrosion science. 1–575 (2010).  https://doi.org/10.1007/978-1-4419-0455-3
  21. 21.
    Revie, R.W.: Uhlig’s Corrosion Handbook: Third Edition. John Wiley & Sons Inc., Hoboken, New Jersey (2011)Google Scholar
  22. 22.
    Fontana, M.G.: Corrosion. Ind. Eng. Chem. 47, 81–82 (1955)Google Scholar
  23. 23.
    Jones, D.: Principles and prevention of corrosion. Macmillan, New York, NY (1992)Google Scholar
  24. 24.
    de Souza, F.S.; Spinelli, A.: Caffeic acid as a green corrosion inhibitor for mild steel. Corros. Sci. 51, 642–649 (2009)CrossRefGoogle Scholar
  25. 25.
    Agarwal, P.; Landolt, D.: Effect of anions on the efficiency of aromatic carboxylic acid corrosion inhibitors in near neutral media: experimental investigation and theoretical modeling. Corros. Sci. 40, 671–691 (1998)CrossRefGoogle Scholar
  26. 26.
    Horsup, D.I.; Clark, J.C.; Binks, B.P.; Fletcher, P.D.I.; Hicks, J.T.: The fate of oilfield corrosion inhibitors in multiphase systems. Corrosion 66(3), 036001–036001-14 (2010)CrossRefGoogle Scholar
  27. 27.
    Nešić, S.: Key issues related to modelling of internal corrosion of oil and gas pipelines—a review. Corros. Sci. 49, 4308–4338 (2007)CrossRefGoogle Scholar
  28. 28.
    Olvera-Martínez, M.E.; Mendoza-Flores, J.; Genesca, J.: \(\text{ CO }_{2}\) corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors. J. Loss Prev. Process Ind. 35, 19–28 (2015)CrossRefGoogle Scholar
  29. 29.
    Groysman, A.; Street, D.: Corrosion in systems for storage and transportation of petroleum products and biofuels. In: Proceedings of the NACE Corrosion (2014)Google Scholar
  30. 30.
    Wu, W.; Cheng, G.; Hu, H.; Zhou, Q.: Risk analysis of corrosion failures of equipment in refining and petrochemical plants based on fuzzy set theory. Eng. Fail. Anal. 32, 23–34 (2013)CrossRefGoogle Scholar
  31. 31.
    Ko, M.; Ingham, B.; Laycock, N.; Williams, D.E.: In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on \(\text{ CO }_{2}\) corrosion of pipeline steels. Corros. Sci. 80, 237–246 (2014)CrossRefGoogle Scholar
  32. 32.
    Lide, D.: DR 2003–2004 CRC Handbook of Chemistry and Physics. Boca Raton, FL, itd: CRC PressGoogle Scholar
  33. 33.
    Fosbøl, P.L.; Thomsen, K.; Stenby, E.H.: Review and recommended thermodynamic properties of \(\text{ FeCO }_{3}\). Corros. Eng. Sci. Technol. 45, 115–135 (2010)CrossRefGoogle Scholar
  34. 34.
    Clover, D.; Kinsella, B.; Pejcic, B.; De Marco, R.: The influence of microstructure on the corrosion rate of various carbon steels. J. Appl. Electrochem. 35, 139–149 (2005)CrossRefGoogle Scholar
  35. 35.
    Takabe, H.; Ueda, M.: Effect of environmental factor and microstructure on morphology of corrosion products in \(\text{ CO }_{2}\) environments. In: Presented at the Corrosion 1999 conference, San Antonio, TX , USA (1999)Google Scholar
  36. 36.
    Berntsen, T.; Seiersten, M.; Hemmingsen, T.: Effect of \(\text{ FeCO }_{3}\) supersaturation and carbide exposure on the \(\text{ CO }_{2}\) corrosion rate of NACE corrosion, Houston 1998, Paper No. 31 (1998)Google Scholar
  37. 37.
    De Waard, C.; Lotz, U.; Milliams, D.E.: Predictive model for \(\text{ CO }_{2}\) corrosion engineering in wet natural gas pipelines. Corrosion 47, 976–985 (1991)CrossRefGoogle Scholar
  38. 38.
    Gil, P.; Manuel, M.J.; Domínguez, R.; Mexicano, I.; Lindsay, R.: Corrosion inhibition performance of 2-mercaptobenzimidazole in sweet oilfield conditions. Corrosion 2(4109), 1–9 (2014)Google Scholar
  39. 39.
    Nešić, S.; Lunde, L.: Carbon dioxide corrosion of carbon steel in two-phase flow. Corrosion 50(9), 717–727 (1994)CrossRefGoogle Scholar
  40. 40.
    De Waard, C.; Milliams, D.E.: Carbonic acid corrosion of steel. Corrosion 31, 177–181 (1975)CrossRefGoogle Scholar
  41. 41.
    Dugstad, A. Mechanism of protective film formation during \(\text{ CO }_{2}\) corrosion of carbon steel. In: Corrosion ’98, San Diego, CA (US), 22-27 Mar 1998, NACE International, Houston, TX (US) (1998)Google Scholar
  42. 42.
    George, K.; Nešic, S.: Investigation of carbon dioxide corrosion of mild steel in the presence of acetic acid-part 1: basic mechanisms. Corrosion 63(2), 178–186 (2007)CrossRefGoogle Scholar
  43. 43.
    Paolinelli, L.D.; Pérez, T.; Simison, S.N.: The effect of pre-corrosion and steel microstructure on inhibitor performance in \(\text{ CO }_{2}\) corrosion. Corros. Sci. 50, 2456–2464 (2008)CrossRefGoogle Scholar
  44. 44.
    Nešić, S.; Lee, K.-L.J.: A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 3: film growth model. Corrosion 59, 616–628 (2003)CrossRefGoogle Scholar
  45. 45.
    Honarvar Nazari, M.; Allahkaram, S.R.; Kermani, M.B.: The effects of temperature and pH on the characteristics of corrosion product in \(\text{ CO }_{2}\) corrosion of grade X70 steel. Mater. Des. 31, 3559–3563 (2010)CrossRefGoogle Scholar
  46. 46.
    Nešić, S.; Lee, K.J.; Ruzic, V.: A mechanistic model of iron carbonate film growth and the effect on \(\text{ CO }_{2}\) corrosion of mild steel. In: NACE Corrosion/2002 Conference, paper #237, Houston, USA (2002)Google Scholar
  47. 47.
    Mustafa, A.H.; Ari-Wahjoedi, B.; Ismail, M.C.: Inhibition of \(\text{ CO }_{2}\) corrosion of X52 steel by imidazoline-based inhibitor in high pressure \(\text{ CO }_{2}\)-water environment. J. Mater. Eng. Perform. 22, 1748–1755 (2013)CrossRefGoogle Scholar
  48. 48.
    Dugstad, A.: Fundamental aspects of \(\text{ CO }_{2}\) metal loss corrosion: Part 1. Mechanism. In: NACE Conference Papers. NACE International (2006)Google Scholar
  49. 49.
    Heuer, J.K.; Stubbins, J.F.: An XPS characterization of \(\text{ FeCO }_{3 }\) films from \(\text{ CO }_{2 }\) corrosion. Corros. Sci. 41, 1231–1243 (1999)CrossRefGoogle Scholar
  50. 50.
    Brondel, D.; Edwards, R.; Hayman, A.; Hill, D.; Semerad, T.: Corrosion in the oil Industry. Oilfield Rev. 6, 4–18 (1994)Google Scholar
  51. 51.
    Shukla, S.K.; Quraishi, M.A.; Ebenso, E.E.: Adsorption and corrosion inhibition properties of Cefadroxil on mild steel in hydrochloric acid. Int. J. Electrochem. Sci. 6, 2912–2931 (2011)Google Scholar
  52. 52.
    Goulart, C.M.; Esteves-Souza, A.; Martinez-Huitle, C.A.; Rodrigues, C.J.F.; Maciel, M.A.M.; Echevarria, A.: Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corros. Sci. 67, 281–291 (2013)CrossRefGoogle Scholar
  53. 53.
    Rajeev, P.: Corrosion mitigation of the oil well steels using organic inhibitors-a review. J. Mater. Environ. Sci. 3, 856–869 (2012). (Bentiss)Google Scholar
  54. 54.
    Ramachandran, S.; Jovancicevic, V.: Molecular modeling of the inhibition of mild steel carbon dioxide corrosion by imidazolines. Corrosion 55, 259–267 (1999)CrossRefGoogle Scholar
  55. 55.
    Cruz, J.; Martínez, R.; Genesca, J.; García-Ochoa, E.: Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media. J. Electroanal. Chem 566, 111–121 (2004)CrossRefGoogle Scholar
  56. 56.
    Khaled, K.F.: The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochim. Acta 48, 2493–2503 (2003)CrossRefGoogle Scholar
  57. 57.
    Popova, A.; Christov, M.; Raicheva, S.; Sokolova, E.: Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion. Corros. Sci. 46, 1333–1350 (2004)CrossRefGoogle Scholar
  58. 58.
    Antonijevic, M.M.; Petrovic, M.B.: Copper corrosion inhibitors. A review. Rev. Lit. Arts Am. 3, 1–28 (2008)Google Scholar
  59. 59.
    Finšgar, M.: 2-Mercaptobenzimidazole as a copper corrosion inhibitor: Part I. Long-term immersion, 3D-profilometry, and electrochemistry. Corros. Sci. 72, 82–89 (2013)CrossRefGoogle Scholar
  60. 60.
    Singh, A.; Lin, Y.; Liu, W.; Kuanhai, D.; Pan, J.; Huang, B.; Ren, C.; Zeng, D.: A stud on the inhibition of N80 steel in 3.5% NaCl solution saturated with \(\text{ CO }_{2}\) by fruit extract of Gingko biloba. J. Taiwan Inst. Chem. Eng. 45, 1918–1926 (2014)CrossRefGoogle Scholar
  61. 61.
    Galio, A.F.: Corrosion inhibitors—principles, mechanisms and applications. Ch 16.  https://doi.org/10.5772/57255
  62. 62.
    Bentiss, F.; Jama, C.; Mernari, B.; Attari, H.E.; Kadi, L.E.; Lebrini, M.; Traisnel, M.; Lagrenée, M.: Corrosion control of mild steel using 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in normal hydrochloric acid medium. Corros. Sci. 51, 1628–1635 (2009). (Singh)CrossRefGoogle Scholar
  63. 63.
    Noor, E.; Al-Moubaraki, A.: Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4 [4\(^{\prime }\)(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater. Chem. Phys. 110, 145–154 (2008)CrossRefGoogle Scholar
  64. 64.
    Desimone, M.P.; Gordillo, G.; Simison, S.N.: The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in \(\text{ CO }_{2}\) saturated solution. Corros. Sci. 53, 4033–4043 (2011)CrossRefGoogle Scholar
  65. 65.
    Garverick, L.: Corrosion in the petrochemical industry. Materials Park, ASM International, Russell Township (1994)Google Scholar
  66. 66.
    Go, T.S., Mo, C.: Use of alkylene polyamines in distillation columns to control corrosion United States Patent 3819328 (1973)Google Scholar
  67. 67.
    Tiu, B.D.B.; Advincula, R.C.: Polymeric corrosion inhibitors for the oil and gas industry: design principles and mechanism. React. Funct. Polym. 95, 25–45 (2015)CrossRefGoogle Scholar
  68. 68.
    Kelland, M.A.: Production Chemicals for the Oil and Gas Industry. CRC Press, Boca Raton (2010)Google Scholar
  69. 69.
    Dariva, C.G.; Galio, A.F.: Corrosion inhibitors—principles mechanisms and applications. Dev. Corros. Prot. (2014).  https://doi.org/10.5772/57255
  70. 70.
    Sanyal, B.: Organic compounds as corrosion inhibitors in different environments—a review. Progr. Org. Coat. 9, 165–236 (1981)CrossRefGoogle Scholar
  71. 71.
    Hogue, R.; King, T.; Mitchell, R.: Corrosion inhibitors and processes for using the same. US Patent 3,989,637 (1976)Google Scholar
  72. 72.
    Raja, P.B.; Sethuraman, M.G.: Natural products as corrosion inhibitor for metals in corrosive media—a review. Mater. Lett. 62, 113–116 (2008)CrossRefGoogle Scholar
  73. 73.
    Wang, B.; Du, M.; Zhang, J.; Gao, C.J.: Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against \(\text{ CO }_{2}\) corrosion. Corros. Sci. 53, 353–361 (2011)CrossRefGoogle Scholar
  74. 74.
    Jovancicevic, V.; Ramachandran, S.; Prince, P.: Inhibition of carbon dioxide corrosion of mild steel by imidazolines and their precursors. Corrosion, Paper No. 18 (1998)Google Scholar
  75. 75.
    Liu, X.; Chen, S.; Ma, H.; Liu, G.; Shen, L.: Protection of iron corrosion by stearic acid and stearic imidazoline self-assembled monolayers. Appl. Surf. Sci. 253, 814–820 (2006)CrossRefGoogle Scholar
  76. 76.
    Liu, X.; Okafor, P.; Zheng, Y.: The inhibition of \(\text{ CO }_{2}\) corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives. Corros. Sci. 51, 744–751 (2009)CrossRefGoogle Scholar
  77. 77.
    Edwards, A.; Osborne, C.; Webster, S.; Klenerman, D.; Joseph, M.; Ostovar, P.; Doyle, M.: Mechanistic studies of the corrosion inhibitor oleic imidazoline. Corros. Sci. 36, 315–325 (1994)CrossRefGoogle Scholar
  78. 78.
    Ramachandran, S.; Tsai, B.B.-L.; Blanco, M.; Chen, H.; Tang, Y.; Goddard, W.A.: Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines. Langmuir 12, 6419–6428 (1996)CrossRefGoogle Scholar
  79. 79.
    Wang, D.; Li, S.; Ying, Y.; Wang, M.; Xiao, H.; Chen, Z.: Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives. Corros. Sci. 41, 1911–1919 (1999)CrossRefGoogle Scholar
  80. 80.
    Cruz, J.; Martínez-Aguilera, L.: Reactivity properties of derivatives of 2-imidazoline: an ab initio DFT study. Int. J. Q. Chem. 85, 546–556 (2001)CrossRefGoogle Scholar
  81. 81.
    McIntire, G.; Lippert, J.; Yudelson, J.: The effect of dissolved \(\text{ CO }_{2}\) and \(\text{ O }_{2}\) on the corrosion of iron. Corrosion 46, 91–95 (1990)CrossRefGoogle Scholar
  82. 82.
    Fujioka, H.; Murai, K.; Kubo, O.; Ohba, Y.; Kita, Y.: One-pot synthesis of imidazolines from aldehydes: detailed study about solvents and substrates. Tetrahedron 63, 638–643 (2007)CrossRefGoogle Scholar
  83. 83.
    Ishihara, M.; Togo, H.: Facile Preparation of 2-Imidazolines from Aldehydes with tert-Butyl Hypochlorite. Synthesis 13, 1939–1942 (2007)Google Scholar
  84. 84.
    Bai, G.; Xu, K.; Chen, G.; Yang, Y.; Li, T.: A facile and efficient synthesis of 2-imidazolines from aldehydes using hydrogen peroxide and substoichiometric sodium iodide. Synthesis 10, 1599–1603 (2011)CrossRefGoogle Scholar
  85. 85.
    Zhang, X.; Wang, F.; He, Y.; Du, Y.: Study of the inhibition mechanism of imidazoline amide on \(\text{ CO }_{2}\) corrosion of Armco iron. Corros. Sci. 43, 1417–1431 (2001)CrossRefGoogle Scholar
  86. 86.
    Mazumder, M.A.J.; Al-Muallem, H.A.; Ali, S.A.: The effects of N-pendants and electron-rich amidine motifs in 2-(p-alkoxyphenyl)-2-imidazolines on mild steel corrosion in \(\text{ CO }_{2}\)-saturated 0.5M NaCl. Corros. Sci. 90, 54–68 (2015)CrossRefGoogle Scholar
  87. 87.
    Qiao, W.; Zheng, Z.; Shi, Q.: Synthesis and properties of a series of \(\text{ CO }_{2}\) switchable surfactants with Imidazoline group. J. Surfact. Deterg. 15, 533–539 (2012)CrossRefGoogle Scholar
  88. 88.
    Heydari, M.; Javidi, M.: Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in \(\text{ CO }_{2}\)-saturated solution and synergistic effect of iodide ions. Corros. Sci. 61, 148–155 (2012)CrossRefGoogle Scholar
  89. 89.
    Farelas, F.; Ramirez, A.: Carbon dioxide corrosion inhibition of carbon steels through bis-imidazoline and imidazoline compounds studied by EIS. Int. J. Electrochem. Sci. 5, 797–814 (2010)Google Scholar
  90. 90.
    Zhang, J.; Liu, J.; Yu, W.; Yan, Y.; You, L.; Liu, L.: Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline. Corros. Sci. 52, 2059–2065 (2010)CrossRefGoogle Scholar
  91. 91.
    Xiong, Y.; Brown, B.; Kinsella, B.; Nešić, S.; Pailleret, A.: Atomic force microscopy study of the adsorption of surfactant corrosion inhibitor films. Corrosion 70, 247–260 (2014)CrossRefGoogle Scholar
  92. 92.
    Jawich, M.W.S.; Oweimreen, G.A.; Ali, S.A.: Heptadecyl-tailed mono- and bis-imidazolines: a study of the newly synthesized compounds on the inhibition of mild steel corrosion in a carbon dioxide-saturated saline medium. Corros. Sci. 65, 104–112 (2012)CrossRefGoogle Scholar
  93. 93.
    Aiad, I.A.I.; Hafiz, A.A.A.; El-Awady, M.Y.M.; Habib, A.O.: Some imidazoline derivatives as corrosion inhibitors. J. Surfactants Deterg. 13, 247–254 (2010)CrossRefGoogle Scholar
  94. 94.
    Martin, J.A.; Valone, F.W.: The existence of imidazoline corrosion inhibitors. Corrosion 41, 281–287 (1985)CrossRefGoogle Scholar
  95. 95.
    Zamudio, R.; Estrada, A.; Benavides, A.; Estrada-Buendía, B.J.: Corrosion control of carbon steel in sulfuric acid environment by 1-(2-hydroxyethyl)-2-alkylimidazolines and its corresponding amide precursors. Revista de la Sociedad Química de México 46, 335–340 (2002)Google Scholar
  96. 96.
    Okafor, P.C.; Liu, X.; Zheng, Y.G.: Corrosion inhibition of mild steel by ethylamino imidazoline derivative in \(\text{ CO }_{2}\)-saturated solution. Corros. Sci. 51, 761–768 (2009)CrossRefGoogle Scholar
  97. 97.
    Tan, Y.J.; Bailey, S.; Kinsella, B.: An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS). Corros. Sci. 38, 1545–1561 (1996)CrossRefGoogle Scholar
  98. 98.
    Duda, Y.; Govea-Rueda, R.; Galicia, M.; Hiram, I.; Beltrán, H.I.; Zamudio-Rivera, L.S.: Corrosion inhibitors: design, performance, and computer simulations. J. Phys. Chem. B 109, 22674–22684 (2005)CrossRefGoogle Scholar
  99. 99.
    Zhang, J.; Qiao, G.; Hu, S.; Yan, Y.; Ren, Z.; Yu, L.: Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros. Sci. 53, 147–152 (2011)CrossRefGoogle Scholar
  100. 100.
    López, D.A.; Simison, S.N.; De Sánchez, S.R.: Inhibitors performance in \(\text{ CO }_{2}\) corrosion EIS studies on the interaction between their molecular structure and steel microstructure. Corros. Sci. 47, 735–755 (2005)CrossRefGoogle Scholar
  101. 101.
    Yang, M.; Wang, Z.M.; Han, X.; Zhang, J.: Corrosion inhibition by the trace amount of sulphide ion in \(\text{ CO }_{2}\)-saturated brine solutions. Corros. Eng. Sci. Technol. 52, 73–79 (2017)CrossRefGoogle Scholar
  102. 102.
    Okafor, P.C.; Liu, C.; Liu, X.; Zheng, Y.G.; Wang, F.; Liu, C.Y.; Wang, F.: Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in \(\text{ CO }_{2}\)-saturated solutions and its synergism with thiourea. J. Solid State Electrochem. 14, 1367–1376 (2010)CrossRefGoogle Scholar
  103. 103.
    Frignani, A.; Trabanelli, G.: Influence of organic additives on the corrosion of iron-based amorphous alloys in dilute sulfuric acid solution. Corrosion 55, 653–660 (1999)CrossRefGoogle Scholar
  104. 104.
    Oguzie, E.E.; Li, Y.; Wang, F.H.: Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. J. Colloid Interface Sci. 310, 90–98 (2007)CrossRefGoogle Scholar
  105. 105.
    Brown, G.M.; Hope, G.A.; Schweinsberg, D.P.; Fredericks, P.M.: SERS study of the interaction of thiourea with a copper electrode in sulphuric acid solution. J. Electroanal. Chem. 380, 161–166 (1995)CrossRefGoogle Scholar
  106. 106.
    Tian, M.; Pell, W.G.; Conway, B.E.: Nanogravimetry study of the processes of anodic dissolution and oxide-film formation at a gold electrode in aq. \(\text{ HClO }_{4}\) containing Br- ions by means of EQCN. J. Electroanal. Chem. 552, 279–290 (2003)CrossRefGoogle Scholar
  107. 107.
    Mazumder, M.; Nazal, M.; Faiz, M.; Ali, S.: Imidazolines containing single-, twin-and triple-tailed hydrophobes and hydrophilic pendants (\(\text{ CH }_{2}\text{ CH }_{2}\text{ NH })_{{\rm n}}\text{ H }\) as inhibitors of mild steel corrosion in \(\text{ CO }_{2}\). RSC Adv. 6, 12348–12362 (2016)CrossRefGoogle Scholar
  108. 108.
    Zhang, J.; Sun, X.; Ren, Y.; Du, M.: The synergistic effect between imidazoline-based dissymmetric bis-quaternary ammonium salts and thiourea against \(\text{ CO }_{2}\) corrosion at high temperature. J. Surfact. Deterg. 18, 981–987 (2015)CrossRefGoogle Scholar
  109. 109.
    Zhang, C.; Duan, H.; Zhao, J.: Synergistic inhibition effect of imidazoline derivative and l-cysteine on carbon steel corrosion in a \(\text{ CO }_{2}\)-saturated brine solution. Corros. Sci. 112, 160–169 (2016)CrossRefGoogle Scholar
  110. 110.
    Ortega-Toledo, D.M.; Gonzalez-Rodriguez, J.G.; Casales, M.; Martinez, L.; Martinez-Villafañe, A.: \(\text{ CO }_{2}\) corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions. Corros. Sci. 53, 3780–3787 (2011)CrossRefGoogle Scholar
  111. 111.
    Branzoi, V.; Branzoi, F.; Baibarac, M.: The inhibition of the corrosion of Armco iron in HCl solutions in the presence of surfactants of the type of N-alkyl quaternary ammonium salts. Mater. Chem. Phys. 65, 288–297 (2000)CrossRefGoogle Scholar
  112. 112.
    Liu, F.; Du, M.; Zhang, J.; Qiu, M.: Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor. Corros. Sci. 51, 102–109 (2009)CrossRefGoogle Scholar
  113. 113.
    Duan, Y.; Yu, F.; Zhao, D.; Cui, X.; Cui, Z.: The inhibition performance of a new imidazoline derivative for mild steel in an oil and gas field. Pet. Sci. Technol. 31, 1959–1966 (2013)CrossRefGoogle Scholar
  114. 114.
    Jevremović, I.; Singer, M.; Nešić, S.; Mišković-Stanković, V.: Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide. Corros. Sci. 77, 265–272 (2013)CrossRefGoogle Scholar
  115. 115.
    Li, W.; Pots, B.F.M.; Zhong, X.; Nesic, S.: Inhibition of \(\text{ CO }_{2}\) corrosion of mild steel—study of mechanical effects of highly turbulent disturbed flow. Corros. Sci. 126, 208–226 (2017)CrossRefGoogle Scholar
  116. 116.
    Liu, X.; Zheng, Y.G.; Okafor, P.C.: Carbon dioxide corrosion inhibition of N80 carbon steel in single liquid phase and liquid/particle two-phase flow by hydroxyethyl imidazoline derivatives. Mater. Corros. 60, 507–513 (2009)CrossRefGoogle Scholar
  117. 117.
    Zhang, H.-H.; Pang, X.; Zhou, M.; Liu, C.; Wei, L.; Gao, K.: The behavior of pre-corrosion effect on the performance of imidazoline-based inhibitor in 3 wt% NaCl solution saturated with \(\text{ CO }_{2}\). Appl. Surf. Sci. 356, 63–72 (2015)CrossRefGoogle Scholar
  118. 118.
    Zhao, J.; Chen, G.: The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a \(\text{ CO }_{2}\)-saturated brine solution. Electrochim. Acta. 69, 247–255 (2012)CrossRefGoogle Scholar
  119. 119.
    Desimone, M.P.; Grundmeier, G.; Gordillo, G.; Simison, S.N.: Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to \(\text{ CO }_{2}\) saturated solution: polarization. EIS and PM-IRRAS studies. Electrochim. Acta 56, 2990–2998 (2011)CrossRefGoogle Scholar
  120. 120.
    Ghareba, S.; Omanovic, S.: Interaction of 12-aminododecanoic acid with a carbon steel surface: towards the development of “green” corrosion inhibitors. Corros. Sci. 52, 2104–2113 (2010)CrossRefGoogle Scholar
  121. 121.
    Jiang, X.; Zheng, Y.G.; Ke, W.: Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for \(\text{ CO }_{2}\) corrosion of N80 steel in 3% NaCl solution. Corros. Sci. 47, 2636–2658 (2005)CrossRefGoogle Scholar
  122. 122.
    Nam, N.D.; Somers, A.; Mathesh, M.; Seter, M.; Hinton, B.; Forsyth, M.; Tan, M.Y.J.: The behaviour of praseodymium 4-hydroxycinnamate as an inhibitor for carbon dioxide corrosion and oxygen corrosion of steel in NaCl solutions. Corros. Sci. 80, 128–138 (2014)CrossRefGoogle Scholar
  123. 123.
    Jiang, X.; Zheng, Y.G.; Qu, D.R.; Ke, W.: Effect of calcium ions on pitting corrosion and inhibition performance in \(\text{ CO }_{2}\) corrosion of N80 steel. Corros. Sci. 48, 3091–3108 (2006)CrossRefGoogle Scholar
  124. 124.
    Nam, N.D.; Bui, Q.V.; Mathesh, M.; Tan, M.Y.J.; Forsyth, M.: A study of 4-carboxyphenylboronic acid as a corrosion inhibitor for steel in carbon dioxide containing environments. Corros. Sci. 76, 257–266 (2013)CrossRefGoogle Scholar
  125. 125.
    Khodyrev, Y.P.; Batyeva, E.S.; Badeeva, E.K.; Platova, E.V.; Tiwari, L.; Sinyashin, O.G.: The inhibition action of ammonium salts of O, O\(\prime \)-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel. Corros. Sci. 53, 976–983 (2011)CrossRefGoogle Scholar
  126. 126.
    Şahin, M.; Bilgiç, S.: The inhibition effects of some heterocyclic nitrogenous compounds on the corrosion of the steel in \(\text{ CO }_{2}\) -saturated NaCl solutions. Anti-Corros. Methods Mater. 50, 34–39 (2003)Google Scholar
  127. 127.
    Ali, S.A.; Mazumder, M.; Nazal, M.: Assembly of succinic acid and isoxazolidine motifs in a single entity to mitigate \(\text{ CO }_{2}\) corrosion of mild steel in saline media. Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.04.005
  128. 128.
    Jayaperumal, D.; Muralidharan, S.: Propargyl alcohol as hydrochloric acid inhibitor for mild steel-temperature dependence of critical concentration. Anti-Corros. Methods Mater. 44, 265–268 (1997)Google Scholar
  129. 129.
    Avdeev, Y.; Kuznetsov, Y.; Buryak, A.: Inhibition of steel corrosion by unsaturated aldehydes in solutions of mineral acids. Corros. Sci. 69, 50–60 (2013)CrossRefGoogle Scholar
  130. 130.
    Mazumder, M.A.J.; Al-Muallem, H.A.; Faiz, M.; Ali, S.A.: Design and synthesis of a novel class of inhibitors for mild steel corrosion in acidic and carbon dioxide-saturated saline media. Corros. Sci. 87, 187–198 (2014)CrossRefGoogle Scholar
  131. 131.
    Pandarinathan, V.; Lepková, K.; Bailey, S.I.; Becker, T.; Gubner, R.: Adsorption of corrosion inhibitor 1-dodecylpyridinium chloride on carbon steel studied by in situ AFM and electrochemical methods. Ind. Eng. Chem. Res. 53, 5858–5865 (2014)CrossRefGoogle Scholar
  132. 132.
    Pandarinathan, V.; Lepková, K.; Bailey, S.I.; Gubner, R.: Evaluation of corrosion inhibition at sand-deposited carbon steel in \(\text{ CO }_{2}\)-saturated brine. Corros. Sci. 72, 108–117 (2013)CrossRefGoogle Scholar
  133. 133.
    Zhao, J.; Duan, H.; Jiang, R.: Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in \(\text{ H }_{2}\text{ S }\) and \(\text{ CO }_{2}\) saturated brine solution. Corros. Sci. 91, 108–119 (2015)CrossRefGoogle Scholar
  134. 134.
    Abd El-Lateef, H.M.; Aliyeva, L.I.; Abbasov, V.M.; Ismayilov, T.A.: Corrosion inhibition of low carbon steel in CO2-saturated solution using Anionic surfactant. Adv. Appl. Sci. Res. 3, 1185–1201 (2012)Google Scholar
  135. 135.
    Usman, B.J.; Umoren, S.A.; Gasem, Z.M.: Inhibition of API 5L X60 steel corrosion in \(\text{ CO }_{2}\)-saturated 3.5% NaCl solution by tannic acid and synergistic effect of KI additive. J. Mol. Liquids 237, 146–156 (2017)CrossRefGoogle Scholar
  136. 136.
    Durnie, W.; Marco, R.; De Jefferson, A.; Kinsella, B.: Development of a structure-activity relationship for oil field corrosion inhibitors. J. Electrochem. Soc. 146, 1751–1756 (1999)CrossRefGoogle Scholar
  137. 137.
    Vakili, A.M.; Davoodi, A.; Farzi, G.A.; Kosari, A.: Water-base acrylic terpolymer as a corrosion inhibitor for SAE1018 in simulated sour petroleum solution in stagnant and hydrodynamic conditions. Corros. Sci. 64, 44–54 (2012)CrossRefGoogle Scholar
  138. 138.
    Jeyaprabha, C.; Sathiyanarayanan, S.; Venkatachari, G.: Polyaniline as corrosion inhibitor for iron in acid solutions. J. Appl. Polym. Sci. 101, 2144–2153 (2006)CrossRefGoogle Scholar
  139. 139.
    Straetmans, U.; Soltau, M.; Straetmans. F.: Polymeric corrosion inhibiter for metal surfaces and the production thereof, US Patent App. 14/000,772 (2012)Google Scholar
  140. 140.
    Ibrahim, T.; Gomes, E.; Obot, I.B.; Khamis, M.; Abou Zour, M.: Corrosion inhibition of mild steel by Calotropis procera leaves extract in a \(\text{ CO }_{2}\) saturated sodium chloride solution. J. Adhes. Sci. Technol. 30, 2523–2543 (2016)CrossRefGoogle Scholar
  141. 141.
    Singh, A.; Lin, Y.; Liu, W.; Deng, K.; Pan, J.; Huang, B.; Ren, C.; Zeng, D.: A study on the inhibition of N80 steel in 3.5% NaCl solution saturated with \(\text{ CO }_{2}\) by fruit extract of Gingko biloba. J. Taiwan. Inst. Chem. Eng. 45, 1918–1926 (2014)CrossRefGoogle Scholar
  142. 142.
    El-Lateef, A.; Hany, M.; Ismayilov, I.T.; Abbasov, V.M.; Efremenko, E.N.; Aliyeva, L.I.; Qasimov, E.E.: Green surfactants from the type of fatty acids as effective corrosion inhibitors for mild steel in \(\text{ CO }_{2}\)-saturated NaCl solution. Am. J. Phys. Chem. 2, 16–23 (2013)CrossRefGoogle Scholar
  143. 143.
    Chen, S.; Singh, A.; Wang, Y.; Liu, W.; Deng, K.; Lin, Y.: Inhibition effect of Ilex kudingcha C.J. Tseng (Kudingcha) extract on J55 Steel in 3.5wt% NaCl Solution Saturated with \(\text{ CO }_{2}\). Int. J. Electrochem. Sci. 12, 782–796 (2017)CrossRefGoogle Scholar
  144. 144.
    Lin, Y.; Singh, A.; Ebenso, E.E.; Quraishi, M.A.; Zhou, Y.; Huang, Y.: Use of HPHT autoclave to determine corrosion inhibition by berberine extract on carbon steels in 3.5% NaCl solution saturated with \(\text{ CO }_{2}\). Int. J. Electrochem. Sci. 10, 194–208 (2015)Google Scholar
  145. 145.
    Singh, A.; Lin, Y.; Liu, W.; Ebenso, E.E.; Pan, J.: Extract of Momordica charantia (Karela) Seeds as Corrosion Inhibitor for P110SS Steel in \(\text{ CO }_{2}\) Saturated 3.5% NaCl Solution. Int. J. Electrochem. Sci. 8, 12884–12893 (2013)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations