Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5711–5722 | Cite as

Removal of Copper and Lead using Banana Biochar in Batch Adsorption Systems: Isotherms and Kinetic Studies

  • M. T. Amin
  • A. A. Alazba
  • M. Shafiq
Research Article - Chemical Engineering
  • 138 Downloads

Abstract

This study involved investigating the adsorption potential of biochar prepared from banana peel for the removal of copper (\(\hbox {Cu}^{2+})\) and lead (\(\hbox {Pb}^{2+})\). Process parameters for batch adsorption including contact time, pH, adsorbent dose, and initial metal concentrations were optimized. The time at which the equilibrium adsorption was attained was recoded as 30 min with a higher removal efficiency of \(\hbox {Pb}^{2+}\) when compared to \(\hbox {Cu}^{2+}\). Optimum removal was observed at a pH of approximately 5.5 and 9 for \(\hbox {Cu}^{2+}\) and \(\hbox {Pb}^{2+}\), respectively. A linear increase in metal removal efficiency was achieved with increases in the adsorbent dose from 0.2 to 1.4 g. The latter was estimated as the optimum adsorbent dose. A 50–70% decrease in removal efficiency was observed when the initial \(\hbox {Cu}^{2+}\) and \(\hbox {Pb}^{2+}\) concentrations were increased from 50 to 300 mg \(\hbox {L}^{-1}\) and from 200 to 1000 mg \(\hbox {L}^{-1}\), respectively. Among the isotherm models, the Freundlich model agreed best with the experimental data for \(\hbox {Pb}^{2+}\) while the Langmuir model exhibited a better ability to describe the adsorption of \(\hbox {Cu}^{2+}\) with each model providing the highest respective coefficient of determination. A pseudo-second-order kinetic model better described the kinetic behavior of both metal ions on the investigated adsorbent, namely banana biochar.

Keywords

Adsorption Banana Biochar \(\hbox {Cu}^{2+}\) Freundlich Langmuir Process parameters \(\hbox {Pb}^{2+}\) Pseudo-second-order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The project was financially supported by King Saud University, Vice Deanship of Research Chairs.

Compliance with Ethical Standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    Ajmal, M.; Ali Khan Rao, R.; Anwar, S.; Ahmad, J.; Ahmad, R.: Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 86, 147–149 (2003).  https://doi.org/10.1016/S0960-8524(02)00159-1 CrossRefGoogle Scholar
  2. 2.
    Mahugo-Santana, C.; Sosa-Ferrera, Z.; Torres-Padrón, M.E.; Santana-Rodríguez, J.J.: Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants. TrAC, Trends Anal. Chem. 30, 731–748 (2011).  https://doi.org/10.1016/j.trac.2011.01.011 CrossRefGoogle Scholar
  3. 3.
    Amuda, O.S.; Giwa, A.A.; Bello, I.A.: Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 36, 174–181 (2007).  https://doi.org/10.1016/j.bej.2007.02.013 CrossRefGoogle Scholar
  4. 4.
    Singh, R.; Gautam, N.; Mishra, A.; Gupta, R.: Heavy metals and living systems: An overview. Indian J. Pharmacol. 43, 246–253 (2011).  https://doi.org/10.4103/0253-7613.81505 CrossRefGoogle Scholar
  5. 5.
    Amin, M.T.; Alazba, A.A.; Shafiq, M.: Adsorption of copper (\(\text{ Cu }^{2+})\) from aqueous solution using date palm trunk fibre: isotherms and kinetics. Desalination Water Treat. 57, 22454–22466 (2016).  https://doi.org/10.1080/19443994.2015.1131635 CrossRefGoogle Scholar
  6. 6.
    Jarup, L.: Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).  https://doi.org/10.1093/bmb/ldg032 CrossRefGoogle Scholar
  7. 7.
    Sridhara Chary, N.; Kamala, C.T.; Samuel Suman Raj, D.: Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 69, 513–524 (2008).  https://doi.org/10.1016/j.ecoenv.2007.04.013 CrossRefGoogle Scholar
  8. 8.
    Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J.: Heavy Metals Toxicity and the Environment. EXS. 101, 133–164 (2012).  https://doi.org/10.1007/978-3-7643-8340-4_6 Google Scholar
  9. 9.
    Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N.: Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014).  https://doi.org/10.2478/intox-2014-0009 CrossRefGoogle Scholar
  10. 10.
    Kumar, M.; Gogoi, A.; Kumari, D.; Borah, R.; Das, P.; Mazumder, P.; Tyagi, V.K.: Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment. J. Hazard. Toxic Radioact. Waste 21, 04017007 (2017)CrossRefGoogle Scholar
  11. 11.
    Hegazi, H.A.: Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 9, 276–282 (2013).  https://doi.org/10.1016/j.hbrcj.2013.08.004 CrossRefGoogle Scholar
  12. 12.
    Wan Ngah, W.S.; Hanafiah, M.A.K.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 99, 3935–3948 (2008).  https://doi.org/10.1016/j.biortech.2007.06.011 CrossRefGoogle Scholar
  13. 13.
    Ahmad, T.; Danish, M.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Ibrahim, M.N.M.: The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ. Sci. Pollut. Res. 19, 1464–1484 (2011).  https://doi.org/10.1007/s11356-011-0709-8 CrossRefGoogle Scholar
  14. 14.
    Ahmaruzzaman, M.; Gupta, V.K.: Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50, 13589–13613 (2011).  https://doi.org/10.1021/ie201477c CrossRefGoogle Scholar
  15. 15.
    Guo, Y.; Zhu, W.; Li, G.; Wang, X.; Zhu, L.: Effect of alkali treatment of wheat straw on adsorption of Cu(II) under acidic condition. J. Chem. 2016, e6326372 (2016).  https://doi.org/10.1155/2016/6326372 CrossRefGoogle Scholar
  16. 16.
    Li, W.; Zhang, L.; Peng, J.; Li, N.; Zhang, S.; Guo, S.: Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: equilibrium and kinetic studies. Ind. Crops Prod. 28, 294–302 (2008).  https://doi.org/10.1016/j.indcrop.2008.03.007 CrossRefGoogle Scholar
  17. 17.
    Rajput, M.S.; Sharma, A.; Sharma, S.; Verma, S.: Removal of lead (II) from aqueous solutions by orange peel. Int. J. Appl. Res. 1, 411–413 (2015)Google Scholar
  18. 18.
    Patra, J.M.; Panda, S.S.; Dhal, N.K.: Biochar as a low-cost adsorbent for heavy metal removal: a review. Int. J. Res. Biosci. 6, 1–7 (2017)Google Scholar
  19. 19.
    Tang, J.; Zhu, W.; Kookana, R.; Katayama, A.: Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 116, 653–659 (2013).  https://doi.org/10.1016/j.jbiosc.2013.05.035 CrossRefGoogle Scholar
  20. 20.
    Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X.: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 110, 50–56 (2012).  https://doi.org/10.1016/j.biortech.2012.01.072 CrossRefGoogle Scholar
  21. 21.
    Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X.: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 46, 406–433 (2016).  https://doi.org/10.1080/10643389.2015.1096880 CrossRefGoogle Scholar
  22. 22.
    Liu, H.Q.; Xu, X.; Wu, Z.H.; Wei, G.X.; Sun, L.: Removal of heavy metals from aqueous solution using biochar derived from biomass and sewage sludge. Appl. Mech. Mater. 768, 89–95 (2015).  https://doi.org/10.4028/www.scientific.net/AMM.768.89 CrossRefGoogle Scholar
  23. 23.
    Mary, G.S.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S.: Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 5, 43–53 (2016).  https://doi.org/10.1007/s40093-016-0116-8 CrossRefGoogle Scholar
  24. 24.
    Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresour. Technol. 160, 191–202 (2014).  https://doi.org/10.1016/j.biortech.2014.01.120 CrossRefGoogle Scholar
  25. 25.
    Niazi, N.K.; Murtaza, B.; Bibi, I.; Shahid, M.; White, J.C.; Nawaz, M.F.; Bashir, S.; Shakoor, M.B.; Choppala, G.; Murtaza, G.; Wang, H.: Chapter 7: removal and recovery of metals by biosorbents and biochars derived from Biowastes. In: Environmental Materials and Waste. pp. 149–177. Academic Press (2016)Google Scholar
  26. 26.
    Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S.: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148, 276–291 (2016).  https://doi.org/10.1016/j.chemosphere.2016.01.043 CrossRefGoogle Scholar
  27. 27.
    Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z.: Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85 (2015).  https://doi.org/10.1016/j.chemosphere.2014.12.058 CrossRefGoogle Scholar
  28. 28.
    Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014).  https://doi.org/10.1016/j.chemosphere.2013.10.071 CrossRefGoogle Scholar
  29. 29.
    DeMessie, B.; Sahle-Demessie, E.; Sorial, G.A.: Cleaning water contaminated with heavy metal ions using pyrolyzed biochar adsorbents. Sep. Sci. Technol. 50, 2448–2457 (2015).  https://doi.org/10.1080/01496395.2015.1064134 CrossRefGoogle Scholar
  30. 30.
    Tag, A.T.; Duman, G.; Ucar, S.; Yanik, J.: Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrolysis. 120, 200–206 (2016).  https://doi.org/10.1016/j.jaap.2016.05.006 CrossRefGoogle Scholar
  31. 31.
    Karim, A.; Kumar, M.; Mohapatra, S.; Panda, C.; Singh, A.: Banana peduncle biochar: characteristics and adsorption of hexavalent chromium from aqueous solution. Int. Res. J. Pure Appl. Chem. 7, 1–10 (2015).  https://doi.org/10.9734/IRJPAC/2015/16163 CrossRefGoogle Scholar
  32. 32.
    Minello, M.C.S.; Paçó, A.L.; Martines, M.A.U.; Caetano, L.; Santos, A.D.; Padilha, P.M.; Castro, G.R.: Sediment grain size distribution and heavy metals determination in a dam on the Paraná River at Ilha Solteira, Brazil. J. Environ. Sci. Health. A 44, 861–865 (2009).  https://doi.org/10.1080/10934520902958591 CrossRefGoogle Scholar
  33. 33.
    Aslam, M.M.; Hasan, I.; Malik, M.; Matin, A.: Removal of copper from industrial effluent by adsorption with economically viable material. Electron. J. Environ. Agric. Food Chem. 3, 658–664 (2004)Google Scholar
  34. 34.
    László, K.; Bóta, A.; Nagy, L.G.: Comparative adsorption study on carbons from polymer precursors. Carbon 38, 1965–1976 (2000).  https://doi.org/10.1016/S0008-6223(00)00038-5 CrossRefGoogle Scholar
  35. 35.
    Yang, G.; Wang, Z.; Xian, Q.; Shen, F.; Sun, C.; Zhang, Y.; Wu, J.: Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv. 5, 40117–40125 (2015).  https://doi.org/10.1039/C5RA02836A CrossRefGoogle Scholar
  36. 36.
    Ho, Y.S.; Ng, J.C.Y.; McKay, G.: Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Methods 29, 189–232 (2000).  https://doi.org/10.1081/SPM-100100009 CrossRefGoogle Scholar
  37. 37.
    Krishnan, K.A.; Anirudhan, T.S.: Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. Water SA. 29, 147–156 (2003).  https://doi.org/10.4314/wsa.v29i2.4849 CrossRefGoogle Scholar
  38. 38.
    Qadeer, R.; Akhtar, S.: Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem. 29, 95–100 (2005)Google Scholar
  39. 39.
    Areco, M.M.; dos Afonso, M.S.: Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surf. B Biointerfaces. 81, 620–628 (2010).  https://doi.org/10.1016/j.colsurfb.2010.08.014 CrossRefGoogle Scholar
  40. 40.
    O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F.: Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol. 99, 6709–6724 (2008).  https://doi.org/10.1016/j.biortech.2008.01.036 CrossRefGoogle Scholar
  41. 41.
    Al-Ghouti, M.A.; Li, J.; Salamh, Y.; Al-Laqtah, N.; Walker, G.; Ahmad, M.N.M.: Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 176, 510–520 (2010).  https://doi.org/10.1016/j.jhazmat.2009.11.059 CrossRefGoogle Scholar
  42. 42.
    Al-Ghouti, M.A.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N.: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage. 69, 229–238 (2003).  https://doi.org/10.1016/j.jenvman.2003.09.005 CrossRefGoogle Scholar
  43. 43.
    Chen, J.P.; Lin, M.: Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Res. 35, 2385–2394 (2001).  https://doi.org/10.1016/S0043-1354(00)00521-2 CrossRefGoogle Scholar
  44. 44.
    Pehlivan, E.; Yanık, B.H.; Ahmetli, G.; Pehlivan, M.: Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 99, 3520–3527 (2008).  https://doi.org/10.1016/j.biortech.2007.07.052 CrossRefGoogle Scholar
  45. 45.
    Dronnet, V.M.; Renard, C.M.G.C.; Axelos, M.A.V.; Thibault, J.-F.: Binding of divalent metal cations by sugar-beet pulp. Carbohydr. Polym. 34, 73–82 (1997).  https://doi.org/10.1016/S0144-8617(97)00055-6 CrossRefGoogle Scholar
  46. 46.
    Ofomaja, A.E.; Ho, Y.-S.: Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigm. 74, 60–66 (2007).  https://doi.org/10.1016/j.dyepig.2006.01.014 CrossRefGoogle Scholar
  47. 47.
    Uzunoğlu, D.; Gürel, N.; Özkaya, N.; Özer, A.: The single batch biosorption of copper(II) ions on Sargassum acinarum. Desalination Water Treat. 52, 1514–1523 (2014).  https://doi.org/10.1080/19443994.2013.789403 CrossRefGoogle Scholar
  48. 48.
    Huang, X.-Y.; Mao, X.-Y.; Bu, H.-T.; Yu, X.-Y.; Jiang, G.-B.; Zeng, M.-H.: Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydr. Res. 346, 1232–1240 (2011).  https://doi.org/10.1016/j.carres.2011.04.012 CrossRefGoogle Scholar
  49. 49.
    Al-Homaidan, A.A.; Al-Houri, H.J.; Al-Hazzani, A.A.; Elgaaly, G.; Moubayed, N.M.S.: Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab. J. Chem. 7, 57–62 (2014).  https://doi.org/10.1016/j.arabjc.2013.05.022 CrossRefGoogle Scholar
  50. 50.
    Putra, W.P.; Kamari, A.; Yusoff, S.N.M.; Ishak, C.F.; Mohamed, A.; Hashim, N.; Isa, I.M.: Biosorption of Cu(II), Pb(II) and Zn(II) Ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J. Encapsulation Adsorpt. Sci. 04, 25 (2014).  https://doi.org/10.4236/jeas.2014.41004 CrossRefGoogle Scholar
  51. 51.
    Bhaumik, M.; Setshedi, K.; Maity, A.; Onyango, M.S.: Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep. Purif. Technol. 110, 11–19 (2013).  https://doi.org/10.1016/j.seppur.2013.02.037 CrossRefGoogle Scholar
  52. 52.
    Malkoc, E.; Nuhoglu, Y.; Dundar, M.: Adsorption of chromium(VI) on pomace–an olive oil industry waste: batch and column studies. J. Hazard. Mater. 138, 142–151 (2006).  https://doi.org/10.1016/j.jhazmat.2006.05.051 CrossRefGoogle Scholar
  53. 53.
    Temkin, M.J.; Pyzhev, V.: Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim URSS. 12, 217–222 (1940)Google Scholar
  54. 54.
    Kumar, P.S.; Ramakrishnan, K.; Gayathri, R.: Removal of Nickel(II) from aqueous solutions by ceralite IR 120 cationic exchange resins. J. Eng. Sci. Technol. 5, 232–243 (2010)Google Scholar
  55. 55.
    Tahir, H.; Hammed, U.; Sultan, M.; Jahanzeb, Q.: Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. Afr. J. Biotechnol. 9, 8206–8214 (2010).  https://doi.org/10.5897/AJB10.911 CrossRefGoogle Scholar
  56. 56.
    Almeida, C.A.P.; Debacher, N.A.; Downs, A.J.; Cottet, L.; Mello, C.A.D.: Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci. 332, 46–53 (2009).  https://doi.org/10.1016/j.jcis.2008.12.012 CrossRefGoogle Scholar
  57. 57.
    Dąbrowski, A.: Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001).  https://doi.org/10.1016/S0001-8686(00)00082-8 CrossRefGoogle Scholar
  58. 58.
    Günay, A.; Arslankaya, E.; Tosun, İ.: Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 146, 362–371 (2007).  https://doi.org/10.1016/j.jhazmat.2006.12.034 CrossRefGoogle Scholar
  59. 59.
    Yadav, S.K.; Singh, D.K.; Sinha, S.: Adsorption study of lead(II) onto xanthated date palm trunk: kinetics, isotherm and mechanism. Desalination Water Treat. 51, 6798–6807 (2013).  https://doi.org/10.1080/19443994.2013.792142 CrossRefGoogle Scholar
  60. 60.
    Liang, S.; Guo, X.; Feng, N.; Tian, Q.: Effective removal of heavy metals from aqueous solutions by orange peel xanthate. Trans. Nonferrous Met. Soc. China 20, s187–s191 (2010).  https://doi.org/10.1016/S1003-6326(10)60037-4 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Alamoudi Water Research ChairKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Environmental SciencesCOMSATS Institute of Information TechnologyAbbottabadPakistan
  3. 3.Agricultural Engineering DepartmentKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations