Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 6, pp 2793–2803 | Cite as

Design of an Intelligent q-LMS Algorithm for Tracking a Non-stationary Channel

  • M. Arif
  • I. Naseem
  • M. MoinuddinEmail author
  • U. M. Al-Saggaf
Research Article - Electrical Engineering

Abstract

Tracking of a time-varying channel is a challenging task, especially when channel is non-stationary. In this work, we propose a time-varying q-LMS algorithm to efficiently track a random-walk channel. To do so, we first perform tracking analysis of the q-LMS algorithm in a non-stationary environment and then derive the expressions for the transient and steady-state tracking excess mean-square-error (EMSE). Thus, we evaluate an optimum value of q parameter which minimizes the tracking EMSE. Next, by utilizing the derived optimum q, we design a time-varying mechanism to vary the parameter q according to the estimation of instantaneous error energy which provides faster convergence in the initial phase while attain a lower EMSE near final stages of adaptation.

Keywords

Adaptive filtering q-LMS Steady-state analysis Mean-square error Tracking analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  2. 2.
    Cowan, C.; Grant, P.: Adaptive Filters. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  3. 3.
    Sayed, A.H.: Fundamentals of Adaptive Filtering. Wiley, New York (2003)Google Scholar
  4. 4.
    Widrow, B.; Stearns, S.D.: Adaptive Signal Processing. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  5. 5.
    Slock, D.T.M.: On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Process. 41(9), 2811–2825 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chan, S.C.; Zhou, Y.: On the performance analysis of the least mean m-estimate and normalized least mean m-estimate algorithms with Gaussian inputs and additive Gaussian and contaminated Gaussian noises. J. Signal Process. Syst. 60(1), 81–103 (2010)CrossRefGoogle Scholar
  7. 7.
    Al-Naffouri, T.Y.; Moinuddin, M.: Exact performance analysis of the \(\epsilon \)-NLMS algorithm for colored circular gaussian inputs. IEEE Trans. Signal Process. 58(10), 5080–5090 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Moinuddin, M.; Al-Naffouri, T.Y.; Sohail, M.S.: Exact tracking analysis of the \(\epsilon \)-NLMS algorithm for circular complex correlated Gaussian input. In: 2010 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 225–230 (2010)Google Scholar
  9. 9.
    Al-Naffouri, T.Y.; Moinuddin, M.; Sohail, M.S.: Mean behavior of the NLMS algorithm for correlated Gaussian inputs. IEEE Signal Process. Lett. 18(1), 7–10 (2011)CrossRefGoogle Scholar
  10. 10.
    Mai, J.; Sayed, A.H.: A feedback approach to the steady-state performance of fractionally-spaced blind adaptive equalizers. IEEE Trans. Signal Process. 48, 80–91 (2000)CrossRefGoogle Scholar
  11. 11.
    Sayed, A.H.; Rupp, M.: A time-domain feedback analysis of adaptive algorithms via the small gain theorem. In: Proceedings of the SPIE, vol. 2563, pp. 458–469, San Diego, CA (1995)Google Scholar
  12. 12.
    Rupp, M.; Sayed, A.H.: On the convergence of blind adaptive equalizers for constant modulus signals. IEEE Trans. Signal Process. 48, 80–91 (2000)CrossRefGoogle Scholar
  13. 13.
    Al-Naffouri, T.Y.; Sayed, A.H.: Transient analysis of adaptive filters with error nonlinearities. IEEE Trans. Signal Process. 51(3), 653–663 (2003)CrossRefGoogle Scholar
  14. 14.
    Al-Naffouri, T.Y.; Sayed, A.H.: Transient analysis of data normalized adaptive filters. IEEE Trans. Signal Process. 51(3), 639–652 (2003)CrossRefGoogle Scholar
  15. 15.
    Al-Saggaf, U.M.; Moinuddin, M.; Arif, M.; Zerguine, A.: The \(q\)-least mean squares algorithm. Signal Process. 111, 50–60 (2015)CrossRefGoogle Scholar
  16. 16.
    Ernst, T.: The History of q-Calculus and a New-Method. U. U. D. M. Report 2000:16, Department of Mathematics, Uppsala University, Sweden (2000)Google Scholar
  17. 17.
    Jackson, F.H.: On \(q\)-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253–281 (1908)CrossRefGoogle Scholar
  18. 18.
    Jackson, F.H.: On \(q\)-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)zbMATHGoogle Scholar
  19. 19.
    Koekoev, J.: A note on the \(q\)-derivative operator. J. Math. Anal. Appl. 176, 627–634 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentKarachi Institute of Economics and TechnologyKarachiPakistan
  2. 2.School of Electrical, Electronic and Computer EngineeringUniversity of Western AustraliaPerthAustralia
  3. 3.Electrical and Computer Engineering DepartmentKing Abdul Aziz UniversityJeddahSaudi Arabia
  4. 4.Center of Excellence in Intelligent Engineering Systems (CEIES)King Abdul Aziz UniversityJeddahSaudi Arabia

Personalised recommendations