Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 6, pp 2713–2723 | Cite as

A New High-Voltage Gain Non-Isolated Zero-Current-Switching Bidirectional DC–DC Converter

  • Rajesh Thumma
  • Veera Venkata Subrahmanya Kumar BhajanaEmail author
  • Pavel Drabek
  • Martin Jara
Research Article - Electrical Engineering
  • 130 Downloads

Abstract

This paper deals with a new high-voltage-gain zero-current switching bidirectional DC–DC converter for electric vehicles. The hard-switched non-isolated bidirectional converter integrated with auxiliary active switches and resonant elements were designed to attain the zero-current switching turn-off operation in the main IGBTs. This converter has dual characteristics as battery charge (buck) mode and discharge (boost) mode. By individual mode, all the active switches operate under zero-current switching turn-off operation for the minimized turn-off losses. The proposed converter has high voltage gain with reduced turn-off losses when operating in discharge mode and has low output voltage conversion in charge mode. The topology described with the aid of theoretical waveforms were tested using a laboratory prototype 70/300 V, 800 W system functioned under 50 kHz operating frequency.

Keywords

Zero-current switching Charging mode Discharging mode Bidirectional DC–DC Electric vehicle applications 

Nomenclature

\(V_{\mathrm{Cq}}\)

Voltage of resonant capacitor \(C_{\mathrm{q}}\)

\(i_{S1}\)

Current of the main IGBT\(S_{1}\)

\(i_{S2}\)

Current of the auxiliary IGBT\(S_{b}\)

\(i_{S3}\)

Current of the main IGBT\({ S}_{3}\)

\(i_{S4}\)

Current of the main IGBT\({ S}_{4}\)

\(L_{\mathrm{p}}\)

Auxiliary inductor

\(C_{\mathrm{q}}\)

Auxiliary capacitor

k

Constant

\(V_{\mathrm{o}}\)

Output voltage

\(I_{\mathrm{m}}\)

Maximum input inductor current

\(P_{\mathrm{o}}\)

Output power

\(f_{\mathrm{r}}\)

Resonant frequency

ɳ

Efficiency

\(V_{\mathrm{in}}=V_{1}\)

Source voltage (boost mode)

\(V_{\mathrm{in}}=V_{2}\)

Source voltage (buck mode)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardi, H.; Ajami, A.; Kardan, F.; Avilagh, S.N.: Analysis and implementation of a nonisolated bidirectional DC–DC converter with high voltage gain. IEEE Trans. Ind. Elecron. 63(8), 4878–4888 (2016)Google Scholar
  2. 2.
    Hsieh, Y.P.; Chen, J.F.; Yang, L.S.; Wu, C.Y.; Liu, W.S.: High-conversion-ratio bidirectional DC–DC converter with coupled inductor. IEEE Trans. Ind. Electron. 61, 1 (2014)CrossRefGoogle Scholar
  3. 3.
    Aamir, M.; Mekhilef, S.; Kim, H.J.: High-gain zero-voltage switching bidirectional converter with a reduced number of switches. IEEE Trans. Circuits Syst. II Express Briefs 62(8), 816–820 (2015)Google Scholar
  4. 4.
    Yang, L.S.; Liang, T.J.: Analysis and implementation of a novel bidirectional DC–DC converter. IEEE Trans. Ind. Elecron. 59(1), 422–434 (2012)CrossRefGoogle Scholar
  5. 5.
    Das, P.; Mousavi, S.A.; Moschopoulos, G.: Analysis and design of a nonisolated bidirectional ZVS-PWM DC–DC converter with coupled inductors. IEEE Trans. Power Electron. 25(10), 2630–2641 (2010)CrossRefGoogle Scholar
  6. 6.
    Rathore, A.K.; Patil, D.R.; Srinivasan, D.: Non-isolated bidirectional soft-switching current-fed LCL resonant DC/DC converter to interface energy storage in DC microgrid. IEEE Trans. Ind. Appl. 52(2), 1711–1722 (2016)Google Scholar
  7. 7.
    Han, J.; Lim, C.S.; Kim, R.Y.; Hyun, D.S.: Non-isolated bidirectional ZVT converter with a single resonant inductor for energy storage system. In: IEEE Energy Conversion Congress and Exposition, Denver, CO, pp. 5540–5545 (2013)Google Scholar
  8. 8.
    Kwon, M.; Oh, S.; Choi, S.: High gain soft-switching bidirectional DC–DC converter for eco-friendly vehicles. IEEE Trans. Power Electron. 29(4), 1659–1666 (2014)CrossRefGoogle Scholar
  9. 9.
    Lee, K.J.; Park, B.G.; Kim, R.Y.; Hyun, D.S.: Nonisolated ZVT two-inductor boost converter with a single resonant inductor for high step-up applications. IEEE Trans. Power Electron. 27(4), 1966–1973 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, J.; Lai, J.S.; Kim, R.Y.; Yu, W.: High-power density design of a soft-switching high-power bidirectional DC–DC converter. IEEE Trans. Power Electron. 22(4), 1145–1153 (2007)Google Scholar
  11. 11.
    Wang, C.M.; Su, C.H.; Tao, C.W.: Zero-current-transition PWM DC–DC converters using new zero-current-switching PWM switch cell. IEE Proc. Electr. Power Appl. 153(4), 503–512 (2006)CrossRefGoogle Scholar
  12. 12.
    Bhajana, V.V.S.K.; Drabek, P.: A new non-isolated ZCS bidirectional buck–boost DC–DC converter for energy storage applications in electric vehicles. Arab. J. Sci. Eng. 40(12), 3595–3605 (2015). doi: 10.1007/s13369-015-1840-5 CrossRefGoogle Scholar
  13. 13.
    Chen, G.; Deng, Y.; Chen, L.; Hu, Y.; Jiang, L.; He, X.; Wang, Y.: A family of zero-voltage-switching magnetic coupling non-isolated bidirectional DC–DC converters. IEEE Trans. Ind. Electron. PP(99), 1–1 (2017)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • Rajesh Thumma
    • 1
  • Veera Venkata Subrahmanya Kumar Bhajana
    • 1
    • 2
    Email author
  • Pavel Drabek
    • 2
  • Martin Jara
    • 2
  1. 1.School of Electronics EngineeringKIIT UniversityBhubaneswarIndia
  2. 2.Regional Innovation Centre for Electrical EngineeringUniversity of West BohemiaPilsenCzech Republic

Personalised recommendations