Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 2, pp 555–568 | Cite as

Subsampling-Based Blind Image Forgery Detection Using Support Vector Machine and Artificial Neural Network Classifiers

  • Gajanan K. Birajdar
  • Vijay H. Mankar
Research Article - Computer Engineering and Computer Science

Abstract

In order to create convincing doctored images, forged images are exposed to some linear transformations (like rotation and resizing) which involve a resampling step. In copy–paste image forgery, the pasted portion is rescaled in order to hide traces of malicious tampering. In this paper, an algorithm is proposed to detect the global resizing operation of the doctored image blindly based on features extracted using subsampling. Fisher criterion is employed in order to choose the relevant features and reduce the dimensionality of the statistical features. Support vector machine (SVM) and multi-layer feedforward artificial neural network (ANN) are used for classification. Experimental results using \(C_b\), \(C_r\) and grayscale images demonstrate that the proposed method has good rescaling detection performance even when dealing with distortions like JPEG compression. The results indicate that SVM performs better compared to ANN classifier.

Keywords

Image forgery detection Image forensic Rescaling detection Artificial neural network classifier Subsampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Redi, J.A.; Taktak, W.; Dugelay, J.: Digital image forensics: a booklet for beginners. Multimed. Tools Appl. 51(1), 133–162 (2011)CrossRefGoogle Scholar
  2. 2.
    Mahdian, B.; Saic, S.: A bibliography on blind methods for identifying image forgery. Signal Process. Image Commun. 25(6), 389–399 (2010)CrossRefGoogle Scholar
  3. 3.
    Qureshi, M.; Deriche, M.: A bibliography of pixel-based blind image forgery detection techniques. Signal Process. Image Commun. 39(A), 46–74 (2015)CrossRefGoogle Scholar
  4. 4.
    Birajdar, G.; Mankar, V.: Digital image forgery detection using passive techniques: a survey. Digit. Investig. 10(3), 226–245 (2013)CrossRefGoogle Scholar
  5. 5.
    Yang, F.; Li, J.; Lu, W.; Weng, J.: Copy-move forgery detection based on hybrid features. Eng. Appl. Artif. Intell. 59, 73–83 (2017)CrossRefGoogle Scholar
  6. 6.
    Pun, C.-M.; Yuan, X.-C.; Bi, X.-L.: Image forgery detection using adaptive oversegmentation and feature point matching. IEEE Trans. Inf. Forensic Secur. 10(8), 1705–1716 (2015)CrossRefGoogle Scholar
  7. 7.
    Cozzolino, D.; Poggi, G.; Verdoliva, L.: Efficient dense-field copy move forgery detection. IEEE Trans. Inf. Forensic Secur. 10(11), 2284–2297 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhao, X.; Wang, S.; Li, S.; Li, J.: Passive image-splicing detection by a 2-D noncausal Markov model. IEEE Trans. Circuits Syst. Video Technol. 25(2), 185–199 (2015)CrossRefGoogle Scholar
  9. 9.
    El-Alfy, E.-S.M.; Qureshi, M.A.: Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Pattern Anal. Appl. 18(3), 713–723 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wei, W.; Wang, S.; Zhang, X.; Tang, Z.: Estimation of image rotation angle using interpolation-related spectral signatures with application to blind detection of image forgery. IEEE Trans. Inf. Forensics Secur. 5(3), 507–517 (2010)CrossRefGoogle Scholar
  11. 11.
    Feng, X.; Cox, I.J.; Doerr, G.: Normalized energy density based forensic detection of resampled images. IEEE Trans. Inf. Forensics Secur. 14(3), 536–545 (2012)Google Scholar
  12. 12.
    Mahdian, B.; Saic, S.: Blind authentication using periodic properties of interpolation. IEEE Trans. Inf. Forensics Secur. 3(3), 529–538 (2008)CrossRefGoogle Scholar
  13. 13.
    Gallagher, A.C.: Detection of linear and cubic interpolation in JPEG compressed images. In: 2nd Canadian Conference on Computer and Robot Vision (CRV’05), pp. 65–72 (2005)Google Scholar
  14. 14.
    Popescu, A.; Farid, H.: Exposing digital forgeries by detecting traces of re-sampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Bayram, S.; Avcibas, I.; Sankur, B.; Memon, N.: Image manipulation detection. J. Electron. Imaging 15(4), 1–17 (2006)CrossRefGoogle Scholar
  16. 16.
    Prasad, S.; Ramakrishnan, K.R.: On resampling detection and its application to image tampering. In: Proceedings of the IEEE International Conference on Multimedia and Exposition, pp. 1325–1328 (2006)Google Scholar
  17. 17.
    Birajdar, G.; Mankar, V.: Blind method for rescaling detection and rescale factor estimation in digital images using periodic properties of interpolation. AEU Int. J. Electron. Commun. 68(7), 644–652 (2014)CrossRefGoogle Scholar
  18. 18.
    Gul, G.; Avcibas, I.; Kurugollu, F.: SVD based image manipulation detection. In: International Conference on Image Processing (ICIP), pp. 1765–1768 (2010)Google Scholar
  19. 19.
    Wang, R.; Ping, X.: Detection of resampling based on singular value decomposition. In: Proceedings of Fifth International Conference on Image and Graphics, pp. 879–884 (2009)Google Scholar
  20. 20.
    Wei, L.; Hongtao, L.: Robust watermarking based on subsampling and nonnegative matrix factorization. Informatica 19(4), 555–566 (2008)zbMATHGoogle Scholar
  21. 21.
    Luo, H.; Yu, F.-X.; Huang, Z.-L.; Lu, Z.-M.: Blind image watermarking based on discrete fractional random transform and subsampling. Optik 122(4), 311–316 (2011)Google Scholar
  22. 22.
    Wei, L.; Wei, S.; Hongtao, L.: Novel robust image watermarking based on subsampling and DWT. Multimed. Tools Appl. 60(1), 31–46 (2012)Google Scholar
  23. 23.
    Wai, C.: DCT-based Image watermarking using subsampling. IEEE Trans. Multimed. 5(1), 34–38 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pan, J.-S.; Li, W.; Yang, C.-S.; Yan, L.-J.: Image steganography based on subsampling and compressive sensing. Multimed. Tools Appl. (2014). doi: 10.1007/s11042-014-2076-1 Google Scholar
  25. 25.
    Joo, J.C.; Oh, T.W.; Choi, J.H.; Lee, H.K.: Steganalysis scheme using the difference image of calibrated subsampling. In: Proceedings of International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 51–54 (2010)Google Scholar
  26. 26.
    Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38(4), 4600–4607 (2011)CrossRefGoogle Scholar
  27. 27.
    Staroszczyk, T.; Osowski, S.; Markiewicz, T.: Comparative analysis of feature selection methods for blood cell recognition in Leukemia. Mach. Learn. Data Min. Pattern Recogni. LNCS 7376, 467–481 (2012)CrossRefGoogle Scholar
  28. 28.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  29. 29.
    Noble, W.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)CrossRefGoogle Scholar
  30. 30.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 3rd edn. Pearson Prentice-Hall, Upper Saddle River (2008)zbMATHGoogle Scholar
  31. 31.
    Nurettin, A.: A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Syst. Appl. 31(1), 150–158 (2006)CrossRefGoogle Scholar
  32. 32.
    Egmont-Petersen, M.; Ridder, D.; Handels, D.: Image processing with neural networks—a review. Pattern Recognit. 35(10), 2279–2301 (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gopi, E.: Digital image forgery detection using artificial neural network and independent component analysis. Appl. Math. Comput. 194(2), 540–543 (2007)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Huang, Y.; Fan, N.: Learning from interpolated images using neural networks for digital forensics. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 177–182 (2010)Google Scholar
  35. 35.
    Hagan, M.; Demuth, H.; Beale, M.: Neural Network Design, 1st edn. PWS Publishing Co, Boston (1996)Google Scholar
  36. 36.
    Schaefer, G.; Stich, M.: UCID—an uncompressed colour image database. In: Proceedings of SPIE, Storage and retrieval Methods and Applications for Multimedia, pp. 472–480 (2004)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringPriyadarshini Institute of Engineering and TechnologyNagpurIndia
  2. 2.Department of Electronics EngineeringRamrao Adik Institute of TechnologyNerul, Navi MumbaiIndia
  3. 3.Department of Electronics and TelecommunicationGovernment PolytechnicAhmednagarIndia

Personalised recommendations