Arabian Journal for Science and Engineering

, Volume 42, Issue 10, pp 4221–4226 | Cite as

Carbonization of Silicon Nanoparticles via Ablation Induced by Femtosecond Laser Pulses in Hexane

  • Xi Yu
  • Shusaku Terakawa
  • Shunsuke Hayashi
  • Toru Asaka
  • Fumihiro Itoigawa
  • Shingo Ono
  • Jun Takayanagi
Research Article - Special Issue - Functional Materials - Chemistry

Abstract

Silicon carbide (SiC) has been widely used in various technological applications, including power devices, light-receiving devices, and light-emitting devices. Several methods for fabricating SiC particles with nanometer dimensions have been reported, including carbo-thermal reduction of silica, chemical vapor deposition, laser pyrolysis, and microwave irradiation. To develop a new and simple method for fabricating SiC nanoparticles, we investigated the possibility of using femtosecond-laser ablation. In this paper, we report the formation of SiC nanoparticles by femtosecond-laser ablation on silicon immersed in hexane. By using a high-peak-power laser that can achieve extremely high temperatures and pressures on the silicon surface, SiC nanoparticles were successfully fabricated via ablation in hexane. In our experiments, femtosecond pulses from a Yb-fiber laser were used to irradiate to silicon single crystal. The laser was focused onto a spot on the silicon surface. After ablation, we evaluated the particles on the target substrate and particles in the irradiated hexane. Scanning electron microscopy revealed that the particles range in size from 100 to 400 nm. X-ray diffraction analysis indicated that the nanoparticles might be SiC. The characteristic X-ray photoelectron spectroscopy peaks of nanoparticles were Si-2p (100.1 eV) and C-1s (282.9 eV), which are identical to the characteristic peaks of SiC (John et al. in Handbook of X-ray photoelectron spectroscopy, Physical Electronics, Eden Prairie, 1995; Hijikata et al. in Appl Surf Sci 184:161–166, 2001; Shen et al. in Chem Phys Lett 375:177–184, 2003). We also used transmission electron microscopy and electron energy-loss spectroscopy to evaluate particles from the irradiated hexane. Such a simple method of fabricating SiC nanoparticles by femtosecond-laser ablation may open new possibilities in the development of growth techniques for SiC.

Keywords

Silicon carbide Nanoparticles Femtosecond laser Under-liquid processing Laser ablation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    John, M.; William, F.S.; Peter, E.S.; Kenneth, D.B.: Handbook of X-Ray Photoelectron Spectroscopy, pp. 40–45, 56–57, 216, 230–231, 238. Physical Electronics, Eden Prairie (1995)Google Scholar
  2. 2.
    Hijikata, Y.; Yaguchi, H.; Yoshikawa, M.; Yoshida, S.: Composition analysis of SiO\(_{2}\)/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films. Appl. Surf. Sci. 184, 161–166 (2001)CrossRefGoogle Scholar
  3. 3.
    Shen, G.; Chen, D.; Tang, K.; Qian, Y.; Zhang, S.: Silicon carbide hollow nanospheres, nanowires and coaxial nanowires. Chem. Phys. Lett. 375, 177–184 (2003)CrossRefGoogle Scholar
  4. 4.
    Reau, A.; Guizard, B.; Canel, J.; Galy, J.; Tenegal, F.: Silicon carbide nanopowders: the parametric study of synthesis by laser pyrolysis. J. Am. Ceram. Soc. 95, 153–158 (2012)CrossRefGoogle Scholar
  5. 5.
    Weitze, C.E.; Palmour, J.W.; Carter, C.H.; Moore, K.; Nordquist, K.K.; Allen, S.; Thero, C.; Bhatnagar, M.: Silicon carbide high-power devices. IEEE Trans. Electron Devices 43, 1732–1741 (1996)CrossRefGoogle Scholar
  6. 6.
    Larpkiattaworn, S.; Ngernchuklin, P.; Khongwong, W.; Pankurddee, N.; Wada, S.: The influence of reaction parameters on the free Si and C contents in the synthesis of nano-sized SiC. Ceram. Int. 32, 899 (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, X.; Zhu, H.; Cai, J.; Wu, Z.: High-performance 4H–SiC-based ultraviolet pin photodetector. J. Appl. Phys. 102, 024505 (2007)CrossRefGoogle Scholar
  8. 8.
    Zakharko, Y.; Botsoa, J.; Alekseev, S.; Lysenko, V.; Bluet, J.M.; Marty, O.; Skryshevsky, V.A.; Guillot, G.: Influence of the interfacial chemical environment on the luminescence of 3C–SiC nanoparticles. J. Appl. Phys. 107, 013503 (2010)CrossRefGoogle Scholar
  9. 9.
    Yu, I.K.; Rhee, J.H.; Cho, S.; Yoon, H.K.: Design and installation of DC plasma reactor for SiC nanoparticle production. J. Nucl. Mater. 386–388, 631–633 (2009)CrossRefGoogle Scholar
  10. 10.
    Kavecky, S.; Janekova, B.; Madejova, J.; Sajgalik, P.: Silicon carbide powder synthesis by chemical vapour deposition from silane/acetylene reaction system. J. Eur. Ceram. Soc. 20, 1939–1946 (2000)CrossRefGoogle Scholar
  11. 11.
    Sachdev, H.; Scheid, P.: Formation of silicon carbide and silicon carbonitride by RF-plasma CVD. Diam. Relat. Mater. 10, 1160 (2001)CrossRefGoogle Scholar
  12. 12.
    Kijima, K.; Noguchi, H.; Konishi, M.: Sintering of ultrafine SiC powders prepared by plasma CVD. J. Mater. Sci. 24, 2929–2933 (1989)CrossRefGoogle Scholar
  13. 13.
    Cauchetier, M.; Croix, O.; Luce, M.; Michon, M.; Paris, J.; Tistchenko, S.: Laser synthesis of ultrafine powders. Ceram. Int. 13, 13–17 (1987)CrossRefGoogle Scholar
  14. 14.
    Hu, A.; Sanderson, J.; Zhou, Y.; Duley, W.W.: Formation of diamond-like carbon by fs laser irradiation of organic liquids. Diam. Relat. Mater. 18, 999–1001 (2009)CrossRefGoogle Scholar
  15. 15.
    Compagnini, G.; Scalisi, A.A.; Puglisi, O.: Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874 (2003)CrossRefGoogle Scholar
  16. 16.
    Kabashin, A.V.; Meunier, M.: Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 (2003)CrossRefGoogle Scholar
  17. 17.
    Simakin, A.V.; Voronov, V.V.; Kirichenko, N.A.; Shafeev, G.A.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A Mater. Sci. Process. 79, 1127–1132 (2004)CrossRefGoogle Scholar
  18. 18.
    Juodkazis, S.; Nishimura, K.; Tanaka, S.; Misawa, H.; Gamaly, E.G.; Luther-Davies, B.; Hallo, L.; Nicolai, P.; Tikhonchuk, V.T.: Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 161101 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tougaard, S.; Jansson, C.: Background correction in XPS: comparison of validity of different methods. Surf. Interface Anal. 19, 171–174 (1992)CrossRefGoogle Scholar
  20. 20.
    Nguyen, T.P.; Lefrant, S.: XPS study of SiO thin films and SiO-metal interfaces. J. Phys. Condens. Matter 1, 5197–5204 (1989)CrossRefGoogle Scholar
  21. 21.
    Lan, J.; Yang, Y.; Li, X.: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater. Sci. Eng. A 386, 284–290 (2004)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Nagoya Institute of TechnologyNagoyaJapan
  2. 2.Aisin Seiki Co., Ltd.KariyaJapan

Personalised recommendations