Arabian Journal for Science and Engineering

, Volume 42, Issue 6, pp 2441–2448 | Cite as

A Simple Process for the Synthesis of Novel Pyrazolyltriazole and Dihydropyrazolylthiazole Derivatives as Antimicrobial Agents

Research Article - Chemistry

Abstract

Series of novel 1,2-bis((3-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene) hydrazines 4 and 2-(5-(3-(1,2,3-triazol-4-yl)pyrazol-4-yl) pyrazol-1-yl)thiazoles 13 were synthesized using simple and convenient procedures, and their structures were established. Treatment of pyrazole-4-carbaldehydes 1 with methyl ketones in alkaline medium gave the corresponding (E)-1-aryl-3-(3-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones 3 in 82–86% yields. Treatment of 3 with hydrazine hydrate gave 4, in 69–75% yields, rather than the expected 1-aryl-5-methyl-4-(1-aryl-4-(3-phenyl-4,5-dihydro-1H-pyrazol-5-yl)-1H-pyrazol-3-yl)-1H-1,2,3-triazoles. Reactions of 3 with thiosemicarbazide gave the corresponding carbothioamides 9 which in reaction with phenacyl bromides gave the corresponding dihydropyrazolylthiazoles 13 in 82–87% yields. The novel synthesized product exhibits good antimicrobial activities against the tested microorganisms.

Keywords

Antimicrobial activity Dihydropyrazolylthiazoles Pyrazole-4-carbaldehydes Pyrazolyltriazole Synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhat, M.; Nagaraja, G.K.; Kayarmar, R.; Peethamber, S.K.; Shafeeulla, R.M.: Design, synthesis and characterization of new 1,2,3-triazolyl pyrazole derivatives as potential antimicrobial agents via a Vilsmeier–Haack reaction approach. RSC Adv. 6, 59375–59388 (2016)CrossRefGoogle Scholar
  2. 2.
    Gouda, M.A.; Abu-Hashem, A.A.; Saad, M.H.; Elattar, K.M.: 5-Chloropyrazole-4-carboxaldehydes as synthon in heterocyclic synthesis. Res. Chem. Int. 42, 2119–2162 (2016)CrossRefGoogle Scholar
  3. 3.
    Havrylyuk, D.; Roman, O.; Lesyk, R.: Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazolineethiazolidine-based hybrids. Eur. J. Med. Chem. 113, 145–166 (2016)CrossRefGoogle Scholar
  4. 4.
    Abdel-Wahab, B.F.; Khidre, R.E.; Farahat, A.A.: Pyrazole-3(4)-carbaldehyde: synthesis, reactions and biological activity. Arkivoc I, 196–245 (2011)Google Scholar
  5. 5.
    Panda, N.; Jena, A.K.: Fe-catalyzed one-pot synthesis of 1,3-di- and 1,3,5-trisubstituted pyrazoles from hydrazones and vicinal diols. J. Org. Chem. 77, 9401–9406 (2012)CrossRefGoogle Scholar
  6. 6.
    Schmitt, D.C.; Taylor, A.P.; Flick, A.C.; Kyne Jr., R.E.: Synthesis of pyrazoles from 1,3-diols via hydrogen transfer catalysis. Org. Lett. 17, 1405–1408 (2015)CrossRefGoogle Scholar
  7. 7.
    Wu, L.-L.; Ge, Y.-C.; He, T.; Zhang, L.; Fu, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X.: An efficient one-pot synthesis of 3,5-disubstituted \(1H\)-pyrazoles. Synthesis 44, 1577–1583 (2012)CrossRefGoogle Scholar
  8. 8.
    Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F.: One-pot synthesis of 1,4-disubstituted pyrazoles from arylglycines via copper-catalyzed sydnone–alkyne cycloaddition reaction. J. Org. Chem. 79, 7772–7777 (2014)CrossRefGoogle Scholar
  9. 9.
    Reddy, C.R.; Vijaykumar, J.; Grée, R.: Facile one-pot synthesis of 3,5-disubstituted 1\(H\)-pyrazoles from propargylic alcohols via propargyl hydrazides. Synthesis 45, 830–836 (2013)CrossRefGoogle Scholar
  10. 10.
    Harigae, R.; Moriyama, K.; Togo, H.: Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem. 79, 2049–2058 (2014)CrossRefGoogle Scholar
  11. 11.
    Heller, S.T.; Natarajan, S.R.: 1,3-Diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles. Org. Lett. 8, 2675–2678 (2008)CrossRefGoogle Scholar
  12. 12.
    Gosselin, F.; O’Shea, P.D.; Webster, R.A.; Reamer, R.A.; Tillyer, R.D.; Grabowski, E.J.J.: Highly regioselective synthesis of 1-aryl-3,4,5-substituted pyrazoles. Synlett 3267–3270 (2006). doi:10.1055/s-2006-956487
  13. 13.
    Distinto, R.; Zanato, C.; Montanari, S.; Cascio, M.G.; Lazzari, P.; Pertwee, R.; Zanda, M.: Pyrazoles with a “click” 4-[\(N\)-(4-fluorobutyl)-1,2,3-triazole] substituent in position 3 are nanomolar \(\text{ CB }_{1}\) receptor ligands. J. Fluor. Chem. 167, 184–191 (2014)CrossRefGoogle Scholar
  14. 14.
    Abdel-Wahab, B.F.; Abdel-Latif, E.; Mohamed, H.A.; Awad, G.E.A.: Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem. 52, 263–268 (2012)CrossRefGoogle Scholar
  15. 15.
    Kaur, K.; Kumar, V.; Beniwal, V.; Kumar, V.; Aneja, K.R.; Sharma, V.; Jaglan, S.: Solvent-free synthesis of novel (\(E)\)-2-(3,5-dimethyl-4-(aryldiazenyl)-1\(H\)-pyrazol-1-yl)-4-arylthiazoles: determination of their biological activity. Med. Chem. Res. 24, 3863–3875 (2015)CrossRefGoogle Scholar
  16. 16.
    Ye, L.; Dickerson, T.; Kaur, H.; Takada, Y.K.; Fujita, M.; Liu, R.; Knapp, J.M.; Lam, K.S.; Schore, N.E.; Kurth, M.J.; Takada, Y.: Identification of inhibitors against interaction between pro-inflammatory sPLA2-IIA protein and integrin \(\alpha \)v\(\beta 3\). Bioorg. Med. Chem. Lett. 23, 340–345 (2013)CrossRefGoogle Scholar
  17. 17.
    Patel, H.; Ugale, V.; Ingale, A.; Bari, S.: Synthesis and antimicrobial evaluation of pyrazo-thiazoles. Lett. Drug Des. Discov. 9, 840–847 (2012)CrossRefGoogle Scholar
  18. 18.
    Ye, L.; Knapp, J.M.; Sangwung, P.; Fettinger, J.C.; Verkman, A.S.; Kurth, M.J.: Pyrazolylthiazole as \(\Delta \)F508-cystic fibrosis transmembrane conductance regulator correctors with improved hydrophilicity compared to bithiazoles. J. Med. Chem. 53, 3772–3781 (2010)CrossRefGoogle Scholar
  19. 19.
    Baashen, M.A.; Abdel-Wahab, B.F.; El-Hiti, G.A.: Syntheses of triazoloquinoxalines. Heterocycles 92, 1931–1952 (2016)CrossRefGoogle Scholar
  20. 20.
    Bekheit, M.S.; Farahat, A.A.; Abdel-Wahab, B.F.: Synthetic routes to thiazoloquinazolines. Chem. Heterocycl. Compd. 52, 766–772 (2016)CrossRefGoogle Scholar
  21. 21.
    Smith, K.; Alotaibi, M.H.; El-Hiti, G.A.: Regioselective nitration of 2- and 4-nitrotoluenes over systems comprising nitric acid, an acid anhydride and a zeolite. Arkivoc V, 301–309 (2014)Google Scholar
  22. 22.
    Smith, K.; El-Hiti, G.A.; Al-Mansury, S.A.; Alshammari, M.B.; Balakit, A.A.: Lateral lithiation and substitution of \(N^{\prime }\)-(2-methylphenyl)-\(N{,}N\)-dimethylurea. Arkivoc V, 365–375 (2014)Google Scholar
  23. 23.
    El-Hiti, G.A.; Smith, K.; Hegazy, A.S.; Alshammari, M.B.; Masmali, A.: Directed lithiation of simple aromatics and heterocycles for synthesis of substituted derivatives. Arkivoc IV, 19–47 (2015)Google Scholar
  24. 24.
    Smith, K.; El-Hiti, G.A.; Hegazy, A.S.; Kariuki, B.M.: A simple and convenient one-pot synthesis of substituted isoindolin-1-ones via lithiation, substitution and cyclization of \(N^{\prime }\)-benzyl-\(N{,}N\)-dimethylureas. Beilstein J. Org. Chem. 7, 1219–1227 (2011)CrossRefGoogle Scholar
  25. 25.
    Abdel-Wahab, B.F.; Mohamed, H.A.; Ali, M.M.: Synthesis and in vitro cytotoxicity of new 3-(5-methyl-1-aryl-1\(H\)-1,2,3-triazol-4-yl)-1-phenyl-1\(H\)-pyrazoles. J. Mod. Med. Chem. 3, 9–15 (2015)CrossRefGoogle Scholar
  26. 26.
    Pokhodylo, N.T.; Savka, R.D.; Matiichuk, V.S.; Obushak, N.D.: Synthesis and selected transformations of 1-(5-methyl-1-aryl-1\(H\)-1,2,3-triazol-4-yl)ethanones and 1-[4-(4-\(R\)-5-methyl-1\(H\)-1,2,3-triazol-1-yl)phenyl]ethanones. Russ. J. Gen. Chem. 79, 309–314 (2009)CrossRefGoogle Scholar
  27. 27.
    Balouiri, M.; Sadiki, M.; Ibnsouda, S.K.: Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6, 71–79 (2016)CrossRefGoogle Scholar
  28. 28.
    Scott, A.C.: Laboratory control of antimicrobial therapy. In: Collee, J.G., Duguid, J.P., Fraser, A.G., Marmion, B.P. (eds.) Mackie and McCartney Practical Medical Microbiology, vol. 2, 13th edn, pp. 161–181. Churchill Livingstone, Edinburgh (1989)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Applied Organic Chemistry DepartmentNational Research CenterDokki, GizaEgypt
  2. 2.Department of Chemistry, College of Science and HumanitiesShaqra UniversityDuwadimiSaudi Arabia
  3. 3.Chemical Industries DivisionNational Research CentreDokki, GizaEgypt
  4. 4.Chemistry Department, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  5. 5.Cornea Research Chair, Department of Optometry, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations