A Simple Process for the Synthesis of Novel Pyrazolyltriazole and Dihydropyrazolylthiazole Derivatives as Antimicrobial Agents
- 71 Downloads
- 1 Citations
Abstract
Series of novel 1,2-bis((3-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene) hydrazines 4 and 2-(5-(3-(1,2,3-triazol-4-yl)pyrazol-4-yl) pyrazol-1-yl)thiazoles 13 were synthesized using simple and convenient procedures, and their structures were established. Treatment of pyrazole-4-carbaldehydes 1 with methyl ketones in alkaline medium gave the corresponding (E)-1-aryl-3-(3-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones 3 in 82–86% yields. Treatment of 3 with hydrazine hydrate gave 4, in 69–75% yields, rather than the expected 1-aryl-5-methyl-4-(1-aryl-4-(3-phenyl-4,5-dihydro-1H-pyrazol-5-yl)-1H-pyrazol-3-yl)-1H-1,2,3-triazoles. Reactions of 3 with thiosemicarbazide gave the corresponding carbothioamides 9 which in reaction with phenacyl bromides gave the corresponding dihydropyrazolylthiazoles 13 in 82–87% yields. The novel synthesized product exhibits good antimicrobial activities against the tested microorganisms.
Keywords
Antimicrobial activity Dihydropyrazolylthiazoles Pyrazole-4-carbaldehydes Pyrazolyltriazole SynthesisPreview
Unable to display preview. Download preview PDF.
References
- 1.Bhat, M.; Nagaraja, G.K.; Kayarmar, R.; Peethamber, S.K.; Shafeeulla, R.M.: Design, synthesis and characterization of new 1,2,3-triazolyl pyrazole derivatives as potential antimicrobial agents via a Vilsmeier–Haack reaction approach. RSC Adv. 6, 59375–59388 (2016)CrossRefGoogle Scholar
- 2.Gouda, M.A.; Abu-Hashem, A.A.; Saad, M.H.; Elattar, K.M.: 5-Chloropyrazole-4-carboxaldehydes as synthon in heterocyclic synthesis. Res. Chem. Int. 42, 2119–2162 (2016)CrossRefGoogle Scholar
- 3.Havrylyuk, D.; Roman, O.; Lesyk, R.: Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazolineethiazolidine-based hybrids. Eur. J. Med. Chem. 113, 145–166 (2016)CrossRefGoogle Scholar
- 4.Abdel-Wahab, B.F.; Khidre, R.E.; Farahat, A.A.: Pyrazole-3(4)-carbaldehyde: synthesis, reactions and biological activity. Arkivoc I, 196–245 (2011)Google Scholar
- 5.Panda, N.; Jena, A.K.: Fe-catalyzed one-pot synthesis of 1,3-di- and 1,3,5-trisubstituted pyrazoles from hydrazones and vicinal diols. J. Org. Chem. 77, 9401–9406 (2012)CrossRefGoogle Scholar
- 6.Schmitt, D.C.; Taylor, A.P.; Flick, A.C.; Kyne Jr., R.E.: Synthesis of pyrazoles from 1,3-diols via hydrogen transfer catalysis. Org. Lett. 17, 1405–1408 (2015)CrossRefGoogle Scholar
- 7.Wu, L.-L.; Ge, Y.-C.; He, T.; Zhang, L.; Fu, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X.: An efficient one-pot synthesis of 3,5-disubstituted \(1H\)-pyrazoles. Synthesis 44, 1577–1583 (2012)CrossRefGoogle Scholar
- 8.Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F.: One-pot synthesis of 1,4-disubstituted pyrazoles from arylglycines via copper-catalyzed sydnone–alkyne cycloaddition reaction. J. Org. Chem. 79, 7772–7777 (2014)CrossRefGoogle Scholar
- 9.Reddy, C.R.; Vijaykumar, J.; Grée, R.: Facile one-pot synthesis of 3,5-disubstituted 1\(H\)-pyrazoles from propargylic alcohols via propargyl hydrazides. Synthesis 45, 830–836 (2013)CrossRefGoogle Scholar
- 10.Harigae, R.; Moriyama, K.; Togo, H.: Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem. 79, 2049–2058 (2014)CrossRefGoogle Scholar
- 11.Heller, S.T.; Natarajan, S.R.: 1,3-Diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles. Org. Lett. 8, 2675–2678 (2008)CrossRefGoogle Scholar
- 12.Gosselin, F.; O’Shea, P.D.; Webster, R.A.; Reamer, R.A.; Tillyer, R.D.; Grabowski, E.J.J.: Highly regioselective synthesis of 1-aryl-3,4,5-substituted pyrazoles. Synlett 3267–3270 (2006). doi:10.1055/s-2006-956487
- 13.Distinto, R.; Zanato, C.; Montanari, S.; Cascio, M.G.; Lazzari, P.; Pertwee, R.; Zanda, M.: Pyrazoles with a “click” 4-[\(N\)-(4-fluorobutyl)-1,2,3-triazole] substituent in position 3 are nanomolar \(\text{ CB }_{1}\) receptor ligands. J. Fluor. Chem. 167, 184–191 (2014)CrossRefGoogle Scholar
- 14.Abdel-Wahab, B.F.; Abdel-Latif, E.; Mohamed, H.A.; Awad, G.E.A.: Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem. 52, 263–268 (2012)CrossRefGoogle Scholar
- 15.Kaur, K.; Kumar, V.; Beniwal, V.; Kumar, V.; Aneja, K.R.; Sharma, V.; Jaglan, S.: Solvent-free synthesis of novel (\(E)\)-2-(3,5-dimethyl-4-(aryldiazenyl)-1\(H\)-pyrazol-1-yl)-4-arylthiazoles: determination of their biological activity. Med. Chem. Res. 24, 3863–3875 (2015)CrossRefGoogle Scholar
- 16.Ye, L.; Dickerson, T.; Kaur, H.; Takada, Y.K.; Fujita, M.; Liu, R.; Knapp, J.M.; Lam, K.S.; Schore, N.E.; Kurth, M.J.; Takada, Y.: Identification of inhibitors against interaction between pro-inflammatory sPLA2-IIA protein and integrin \(\alpha \)v\(\beta 3\). Bioorg. Med. Chem. Lett. 23, 340–345 (2013)CrossRefGoogle Scholar
- 17.Patel, H.; Ugale, V.; Ingale, A.; Bari, S.: Synthesis and antimicrobial evaluation of pyrazo-thiazoles. Lett. Drug Des. Discov. 9, 840–847 (2012)CrossRefGoogle Scholar
- 18.Ye, L.; Knapp, J.M.; Sangwung, P.; Fettinger, J.C.; Verkman, A.S.; Kurth, M.J.: Pyrazolylthiazole as \(\Delta \)F508-cystic fibrosis transmembrane conductance regulator correctors with improved hydrophilicity compared to bithiazoles. J. Med. Chem. 53, 3772–3781 (2010)CrossRefGoogle Scholar
- 19.Baashen, M.A.; Abdel-Wahab, B.F.; El-Hiti, G.A.: Syntheses of triazoloquinoxalines. Heterocycles 92, 1931–1952 (2016)CrossRefGoogle Scholar
- 20.Bekheit, M.S.; Farahat, A.A.; Abdel-Wahab, B.F.: Synthetic routes to thiazoloquinazolines. Chem. Heterocycl. Compd. 52, 766–772 (2016)CrossRefGoogle Scholar
- 21.Smith, K.; Alotaibi, M.H.; El-Hiti, G.A.: Regioselective nitration of 2- and 4-nitrotoluenes over systems comprising nitric acid, an acid anhydride and a zeolite. Arkivoc V, 301–309 (2014)Google Scholar
- 22.Smith, K.; El-Hiti, G.A.; Al-Mansury, S.A.; Alshammari, M.B.; Balakit, A.A.: Lateral lithiation and substitution of \(N^{\prime }\)-(2-methylphenyl)-\(N{,}N\)-dimethylurea. Arkivoc V, 365–375 (2014)Google Scholar
- 23.El-Hiti, G.A.; Smith, K.; Hegazy, A.S.; Alshammari, M.B.; Masmali, A.: Directed lithiation of simple aromatics and heterocycles for synthesis of substituted derivatives. Arkivoc IV, 19–47 (2015)Google Scholar
- 24.Smith, K.; El-Hiti, G.A.; Hegazy, A.S.; Kariuki, B.M.: A simple and convenient one-pot synthesis of substituted isoindolin-1-ones via lithiation, substitution and cyclization of \(N^{\prime }\)-benzyl-\(N{,}N\)-dimethylureas. Beilstein J. Org. Chem. 7, 1219–1227 (2011)CrossRefGoogle Scholar
- 25.Abdel-Wahab, B.F.; Mohamed, H.A.; Ali, M.M.: Synthesis and in vitro cytotoxicity of new 3-(5-methyl-1-aryl-1\(H\)-1,2,3-triazol-4-yl)-1-phenyl-1\(H\)-pyrazoles. J. Mod. Med. Chem. 3, 9–15 (2015)CrossRefGoogle Scholar
- 26.Pokhodylo, N.T.; Savka, R.D.; Matiichuk, V.S.; Obushak, N.D.: Synthesis and selected transformations of 1-(5-methyl-1-aryl-1\(H\)-1,2,3-triazol-4-yl)ethanones and 1-[4-(4-\(R\)-5-methyl-1\(H\)-1,2,3-triazol-1-yl)phenyl]ethanones. Russ. J. Gen. Chem. 79, 309–314 (2009)CrossRefGoogle Scholar
- 27.Balouiri, M.; Sadiki, M.; Ibnsouda, S.K.: Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6, 71–79 (2016)CrossRefGoogle Scholar
- 28.Scott, A.C.: Laboratory control of antimicrobial therapy. In: Collee, J.G., Duguid, J.P., Fraser, A.G., Marmion, B.P. (eds.) Mackie and McCartney Practical Medical Microbiology, vol. 2, 13th edn, pp. 161–181. Churchill Livingstone, Edinburgh (1989)Google Scholar