Arabian Journal for Science and Engineering

, Volume 42, Issue 6, pp 2329–2339 | Cite as

An Investigation of Corrosion Resistance and Antibacterial Sensitivity Properties of Nano-Ag-Doped \(\hbox {TiO}_{2}\) Coating and \(\hbox {TiO}_{2}\) Coating Grown on NiTi Alloy with the Micro-Arc Oxidation Process

  • Filiz Karabudak
  • Ruhi Yeşildal
  • Ebru Emine ŞüküroğluEmail author
  • Süleyman Şüküroğlu
  • Hamid Zamanlou
  • Neslihan Dikbaş
  • Funda Bayındır
  • Sadri Şen
  • Yaşar Totik
Research Article - Biological Sciences


In this study, \(\hbox {TiO}_{2}\) coatings were grown with nano-Ag doped and micro-arc oxidation technique on NiTi shape memory alloy. The antibacterial sensitivity and corrosion resistance characteristics of both coatings were investigated. The microstructure and composition analyses of the coatings were performed with scanning electron microscope, energy dispersive X-ray spectrometry, and X-Ray diffraction (XRD). The XRD results showed that there were only \(\hbox {TiO}_{2}\) crystal phases (anatase and rutile) on the coating. The results showed that a clean and dense oxide layer was grown on the surface successfully. The surface of nano-Ag-doped \(\hbox {TiO}_{2}\)-coated samples appear to be smoother than the surface of the coatings without Ag. The corrosion tests of the coated and uncoated samples were carried out in three different environments (simulated body fluid, synthetic saliva, and cola) at \(37{^{\circ }}\) which is human body temperature. The corrosion tests showed that the corrosion resistance of \(\hbox {TiO}_{2}\)-coated and nano-Ag-doped \(\hbox {TiO}_{2}\)-coated samples was much higher than the corrosion resistance of the NiTi substrate. Seven different bacteria including (S. aureus, L. monocytogenes, Bacillus subtilis, Salmonella enteritidis, Yersinia enterocolitica, and E. coli, P.aeruginosa) which have the human pathogen feature were used in the antibacterial susceptibility tests. The process was conducted based on the disk diffusion method to test the susceptibility of bacterial strains on the selected coated and uncoated samples, and antimicrobial activity was evaluated in the nano-Ag-doped \(\hbox {TiO}_{2 }\)-coated material; P.aeruginosa, Y. enterocolitica, and E. coli (zone diameter of 8–14 mm) were found to be moderately susceptible; S. aureus, L. monocytogenes, B. subtilis, and S. enteritidis (zone diameters of 8–14 mm) were found to be resistant. The antimicrobial activity of the coating material NiTi was found to be sensitive for all antibacterial tests. According to the \(\hbox {TiO}_{2}\)-coated material results, S. aureus, P.aeruginosa, L. monocytogenes, E. coli were found to be moderately sensitive and Y. enterocolitica, S. enteritidis, and B. subtilis were found to be resistant.


NiTi alloys Micro-arc oxidation (MAO) process \(\hbox {TiO}_{2}\) Nano-Ag-doped \(\hbox {TiO}_{2}\) Corrosion and antibacterial test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, J.L.; Liu, F.; Wang, F.P.; Yuc, D.Z.; Zhao, L.C.: The corrosion resistance behavior of \(\text{ Al }_{2}\text{ O }_{3}\) coating prepared on NiTi alloy by micro-arc oxidation. J. Alloys Compd. 472, 276–280 (2009)CrossRefGoogle Scholar
  2. 2.
    Wang, H.R.; Liu, F.; Zhang, Y.P.; Yu, D.Z.; Wang, F.P.: Preparation and properties of titanium oxide film on NiTi alloy by micro-arc. Appl. Surf. Sci. 257(13), 5576–5580 (2011)Google Scholar
  3. 3.
    Poona, R.W.Y.; Hoa, J.P.Y.; Xuanyong, L.; Chunga, C.Y.; Chua, P.K.; Yeungb, K.W.K.; Lub, W.W.; Cheung, K.M.C.: Formation of titanium nitride barrier layer in nickel–titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance. Thin Solid Films 488, 20–25 (2005)CrossRefGoogle Scholar
  4. 4.
    Brantley, W.A.; Eliades, T.: Orthodontic Materials: Scientific and Clinical Aspects. Thieme Press, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Xu, J.L.; Liua, F.; Wang, F.P.; Zhao, L.C.: Alumina coating formed on medical NiTi alloy by micro-arc oxidation. Mater. Lett. 62, 4112–4114 (2008)CrossRefGoogle Scholar
  6. 6.
    Yoneyama, T.; Miyazaki, S.: Shape Memory Alloys for Biomedical Applications. Woodhead Publishing Limited, Cambridge (2009)CrossRefGoogle Scholar
  7. 7.
    Trepanier, C.; Venugopalan, R.; Pelton, A.R.: Corrosion resistance and biocompatibility of passivated NiTi. In: Shape Memory Implants, pp. 35–45, Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Arndt, M.; Brück, A.; Scully, T.; Jäger, A.; Bourauel, C.: Nickel ion release from orthodontic NiTi wires under simulation of realistic in-situ conditions. J. Mater. Sci. 40(14), 3659–3667 (2005)Google Scholar
  9. 9.
    Petoumeno, E.; Kislyuk, M.; Hoederath, H.; Keilig, L.; Bourauel C.; Jäger, A.: Corrosion susceptibility and nickel release of nickel titanium wires during clinical application. J. Orofac. Orthop. 69(6), 411–423 (2008). doi: 10.1007/s00056-008-0808-4
  10. 10.
    Xu, J.L.; Liu, F.; Wang, F.P.; Yu, D.Z.; Zhao, L.C.: Formation of \(\text{ Al }_{2}\text{ O }_{3}\) coatings on NiTi alloy by micro-arc oxidation method. Curr. Appl. Phys. 9, 663–666 (2009)CrossRefGoogle Scholar
  11. 11.
    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.: Anatase Tio2 films with 2.2 Ev band gap prepared by micro-arc oxidation. Mater. Sci. Eng. B. 139(2-3), 216–220 (2007)Google Scholar
  12. 12.
    Wang, Y.; Lei, T.; Jiang, B.; Guoa, L.: Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution. Appl. Surf. Sci. 233, 258–267 (2004)CrossRefGoogle Scholar
  13. 13.
    Huang, Y.; Wang, Y.; Ning, C.; Nan, K.; Han, Y.: Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation. Biomed. Mater. 2, 196–201 (2007)CrossRefGoogle Scholar
  14. 14.
    Filho, J.T.; Lidízio, L.R.; Sena, L.A.; Damasceno, J.C.; Achete C.A.: Titanium oxide films produced by micro-arc oxidation for high performance titanium implants. XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development, pp. 17–22. Rio de Janeiro, Brazil (2006)Google Scholar
  15. 15.
    Riaz, M.; Zia, R.; Saleemi, F.; Ahmad, R.; Hussain, T.: Influence of titanium on structural, biological and antibacterial properties of \(\text{ SiO }_{2}\)–CaO–\(\text{ Na }_{2}\)O–\(\text{ P }_{2}\text{ O }_{5}\) glass-ceramics. Mater. Today Proc. 10, 5313–5317 (2015)CrossRefGoogle Scholar
  16. 16.
    Kora, A.J.; Sashidhar, R.B.: Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity and its mode of action. Arab. J. Chem. (2014). doi: 10.1016/j.arabjc.2014.10.036
  17. 17.
    Moa, A.; Liao, J.; Xu, W.; Xian, S.; Li, Y.; Bai, S.: Preparation and antibacterial effect of silver-hydroxyapatite/titania nanocomposite thin film on titanium. Appl. Surf. Sci. 255, 435–438 (2008)Google Scholar
  18. 18.
    Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J.: Plasma electrolysis for surface engineering. Surf. Coat. Technol. 122, 73–93 (1999)CrossRefGoogle Scholar
  19. 19.
    Ma, Y.: Master’s Thesis. University Of Windsor, Canada (2005)Google Scholar
  20. 20.
    Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.: Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy. Surf. Coat. Technol. 130, 195–206 (2000)Google Scholar
  21. 21.
    Yerokhin, A.L.; Lyubimov, V.V.; Ashitkov, R.V.: Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceram. Int. 24, 1–6 (1998)CrossRefGoogle Scholar
  22. 22.
    Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24(6), 721–734 (1990)Google Scholar
  23. 23.
    Galvele, J.R.; Duffo, G.S.: Calculation of the surface self-diffusion coefficient, Ds, induced by the exchange current density, Io. application to stress corrosion cracking. Corros. Sci. 39, 605 (1997)Google Scholar
  24. 24.
    Büyüksağiş, A.: The coating of hydroxyapatite (HAP) on 316L stainless steel and Ti6Al4V alloy use by sol-gel method. Electron. J. Mach. Tech. 7(1), 1–11 (2010)Google Scholar
  25. 25.
    Ohtsuki, C.; Kushitani, H.; Kokubo, T.; Kotani, S.; Yamamuro, T.: Apatite formation on the surface of ceravital-type glass-ceramic in the body. J. Biomed. Mater. Res. 25, 1363–1370 (1991)CrossRefGoogle Scholar
  26. 26.
    McKnight-Hanes, C.; Whitford, G.M.: Fluoride release from three glass ionomer materials and the effects of varnishing with or without finishing. Basic Sci. 26, 345–350 (1992)Google Scholar
  27. 27.
    Xu, J.L.; Liu, F.; Wang, F.P.; Yu, D.Z.; Zhao, L.C.: Microstructure and corrosion resistance behavior of ceramic coatings on biomedical NiTi alloy prepared by micro-arc oxidation. Appl. Surf. Sci. 6642–6647 (2008)Google Scholar
  28. 28.
    Siu, H.T.; Man, H.C.: Fabrication of bioactive titania coating on 512 nitinol by plasma electrolytic oxidation. Appl. Surf. Sci. 274, 181–187 (2013)Google Scholar
  29. 29.
    Downes, F.P.; Ito, K.: Compendium of Methods for the Microbiological Examination of Foods. 4th edn. American Public Health Association, Washington, DC (2001)Google Scholar
  30. 30.
    Salfinger, Y.; Tortorello, M.L.: Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association, Washington (2015)CrossRefGoogle Scholar
  31. 31.
    MO7-A9: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard—Ninth Edition, vol. 32, no. 2 (2012)Google Scholar
  32. 32.
    Zhang, P.; Zhang, Z.; Li, W.; Zhu, M.: Effect of Ti-OH groups on microstructure and bioactivity of \(\text{ TiO }_{2}\) coating prepared by micro-arc oxidation. Appl. Surf. Sci. 268, 381–386 (2013)CrossRefGoogle Scholar
  33. 33.
    Erduran, M.; Havıtcıoglu, H.: The biomechanical assessment of talofibularis anterior and calcaneofibular ligaments on ankle joints. J. Biomech. (2011). doi: 10.1016/j.jbiomech.2011.02.065
  34. 34.
    Zhang, X.; Hang, R.; Wu, H.; Huang, X.; Ma, Y.; Lin, N.; Yao, X.; Tian, L.; Tang, B.: Synthesis and antibacterial property of Ag-containing \(\text{ TiO }_{2}\) coatings by combining magnetron sputtering with micro-arc oxidation. Surf. Coat. Technol. 235, 748–754 (2013)Google Scholar
  35. 35.
    Chen, X.; Schluesener, H.J.: Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176, 1–12 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • Filiz Karabudak
    • 1
  • Ruhi Yeşildal
    • 1
  • Ebru Emine Şüküroğlu
    • 2
    Email author
  • Süleyman Şüküroğlu
    • 3
  • Hamid Zamanlou
    • 1
  • Neslihan Dikbaş
    • 4
  • Funda Bayındır
    • 5
  • Sadri Şen
    • 1
  • Yaşar Totik
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringAtaturk UniversityErzurumTurkey
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringGumushane UniversityGumushaneTurkey
  3. 3.Gumushane College of VocationalGumushane UniversityGumushaneTurkey
  4. 4.Faculty of AgricultureAtaturk UniversityErzurumTurkey
  5. 5.Faculty of DentistryAtaturk UniversityErzurumTurkey

Personalised recommendations