Arabian Journal for Science and Engineering

, Volume 42, Issue 10, pp 4351–4364 | Cite as

Synthesis, Characterization, Electrical and Photocatalytic Studies of Polyacrylamide Zr(IV) Phosphosulphosalicylate, a Cation Exchanger: Its Application in the Removal of Hg (II) from Aqueous Solution

  • Seraj Anwar Ansari
  • Fauzia Khan
  • Anees AhmadEmail author
  • Waseem Raza
  • Muneer Ahmad
Research Article - Chemistry


In this work, we synthesized successfully a new organic–inorganic material, polyacrylamide Zr(IV) phosphosulphosalicylate (PAAZPSS) by simple sol–gel method and converted in a cation exchanger and then applied as an adsorbent for the removal of Hg (II) from aqueous solution. In order to confirm the desired synthesis, the prepared material was characterized by many sophisticated techniques such as FTIR, SEM and XRD. The ion exchange adsorbent exhibits good ion exchange capacity (IEC) for alkali metal ion (\(\hbox {K}^{+})\). Selective studies of this ion exchange adsorbent for different metal ions were performed, and on the basis of \({K}_{\mathrm{d}}\) values PAAZPSS was more selective for Hg (II). The sorption experiment for the Hg (II) removal was performed using batch method. The adsorption process followed Langmuir adsorption isotherm and pseudo-second-order kinetic model. The thermodynamic parameters revealed the feasibility, spontaneity, endothermic nature of the PAAZPSS-Hg (II) system. The material showed high value of dielectric constant, dielectric loss at low-frequency region and enhanced AC conductivity at low-frequency region so it can be used in energy storage devices. The material also showed good photocatalytic degradation of rhodamine B and crystal violet dyes. So it may be concluded that polyacrylamide Zr(IV) phosphosulphosalicylate can be employed not only for the treatment of inorganic metal ion and photocatalytic degradation of organic dyes but also in electrical application.


Sol–gel method Adsorption isotherms Kinetic and thermodynamics Dielectric constant Ac conductivity Photocatalytic degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shen, X.; Wang, Q.; Chen, W.; Pang, Y.: Appl. Surf. Sci. 317, 1028 (2014). doi: 10.1016/j.apsusc.2014.09.033
  2. 2.
    Cui, L.; Guo, X.; Wei, Q.; Wang, Y.; Gao, L.; Yan, L.; Yan, T.; Du, B.: J. Colloid Interf. Sci. 439, 112 (2015). doi: 10.1016/j.jcis.2014.10.019
  3. 3.
    Chena, M.; Qin, X.; Zeng, G.; Li, J.: Impacts of human activity modes and climate on heavy metal “spread” in groundwater are biased. J. Chemos. 152, 439–445 (2016)CrossRefGoogle Scholar
  4. 4.
    Krishnani, K.K.; Meng, X.; Dupont, L.: Metal ions binding onto lignocellulosic biosorbent. J. Environ. Sci. Health A 44, 688 (2009). doi: 10.1080/10934520902847810 CrossRefGoogle Scholar
  5. 5.
    De, M.; Azargohar, R.; Dalai, A.K.; Shewchuk, S.R.: Mercury removal by bio-char based modified activated carbons. Fuel 103, 570 (2013). doi: 10.1016/j.fuel.2012.08.011 CrossRefGoogle Scholar
  6. 6.
    Rao, M.M.; Reddy, D.H.K.K.; Venkateswarlu, P.; Seshaiah, K.: Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. J. Env. Manag. 90, 634 (2009). doi: 10.1016/j.jenvman.2007.12.019 CrossRefGoogle Scholar
  7. 7.
    Lu, X.; Jiang, J.; Sun, K.; Wang, J.; Zhang, Y.: Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Mar. Pol. Bul. 78, 69 (2014). doi: 10.1016/j.marpolbul.2013.11.007 CrossRefGoogle Scholar
  8. 8.
    Chen, M.; Xua, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J.: Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavymetals by composting: Applications, microbes and future research needs. Biotech. Adv. 33, 745–755 (2015). doi: 10.1016/j.biotechadv.2015.05.003 CrossRefGoogle Scholar
  9. 9.
    AL-Othman Z.A., Naushad Mu.: Inamuddin, Organic–inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: Preparation, physicochemical characterization and its analytical application in separation of heavy metals, Chem. Eng. J. 172, 369 (2011) doi: 10.1016/j.cej.2011.06.018
  10. 10.
    Sharma, P.: Neetu, Synthesis, characterization and sorption behavior of zirconium(IV) antimonotungstate: An inorganic ion exchanger. Desalination. 267, 277 (2011). doi: 10.1016/j.desal.2010.09.040
  11. 11.
    Akhtar, A.; Khan, M.D.A.; Nabi, S.A.: Synthesis, characterization and photolytic degradation activity of poly-o-toluidine-thorium(IV)molybdophosphate cation exchanger: Analytical application in metal ion treatment. Desalination. 361, 1 (2015). doi: 10.1016/j.desal.2015.01.028
  12. 12.
    Rahman, N.; Haseen, U.; Rashid, M.: Synthesis and characterization of polyacrylamide zirconium (IV) iodate ion-exchanger: Its application for selective removal of lead (II) from wastewater. Arabian J. Chem. (2013) doi: 10.1016/j.arabjc.2013.06.029
  13. 13.
    Rahman, N.; Haseena, U.: Development of polyacrylamide chromium oxide as a new sorbent for solid phase extraction of As(III) from food and environmental water samples. RSC Adv. 5, 7311–7323 (2015)CrossRefGoogle Scholar
  14. 14.
    Khan, A.A.; Shaheen, S.; Habib, U.: Synthesis and characterization of poly-o-anisidine Sn(IV)tungstate: A new and novel ‘organic-inorganic’nano-composite material and its electro-analytical applications as Hg (II) ion-selective membrane electrode. J. Adv. Res. 3, 269 (2012) doi: 10.1016/j.jare.2011.09.002
  15. 15.
    Rahman, N.; Haseen, U.: Inorganic and Polymeric Hybrid Ion Exchangers: Removal of Toxic Heavy Metal ions. Lap Lambert Academic Publishing, Germany (2014). ISBN -13:978-3-659-38850-7)Google Scholar
  16. 16.
    Arrad, O.; Sasson, Y.: Commercial ion exchange resins as catalysts in solid-solid-liquid reactions. J. Org. Chem. 54, 4993 (1989). doi: 10.1021/jo00282a008 CrossRefGoogle Scholar
  17. 17.
    Lutfullah, Rashid M.; Rahman, N.: Zirconium(IV) Phosphosulphosalicylate as an Important Lead(II) Selective Ion-Exchange Material: Synthesis, Characterization and Adsorption Study, Adv. Sci. Lett. 17, 184 (2012) doi: 10.1166/asl.2012.3683
  18. 18.
    Lutfullah, Rashid M., Rahman N., Synthesis, characterization and sorption characteristics of a fibrous organic—inorganic composite material, Adv. Sci. Lett. 17, 136 (2012) DOI: 10.1166/asl.2012.3691
  19. 19.
    Langmuir, I.: the adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1918). doi: 10.1021/ja02242a004 CrossRefGoogle Scholar
  20. 20.
    Crini, G.: Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77, 415 (2008). doi: 10.1016/j.dyepig.2007.07.001 CrossRefGoogle Scholar
  21. 21.
    Rahman, N.; Haseen, U.: Equilibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb(II) by a hybrid inorganic-organic material: polyacrylamide zirconium(IV) iodate, Ind. Eng. Chem. Res. 53, 8198 (2014)
  22. 22.
    Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C.: Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J. Taiwan Inst. Chem. Eng. 43, 604 (2012). doi: 10.1016/j.jtice.2012.01.008 CrossRefGoogle Scholar
  23. 23.
    Hameed, B.H.: Grass waste: a novel sorbent for the removal of basic dye from aqueous solution. J. Hazard. Mat. 166, 233 (2009). doi: 10.1016/j.jhazmat.2008.11.019 CrossRefGoogle Scholar
  24. 24.
    Zhao, F.; Tang, W.Z.; Zhao, D.; Meng, Y.; Yin, D.; Sillanpää, M.: Adsorption kinetics, isotherms and mechanisms of Cd(II), Pb(II), Co(II) and Ni(II) by a modified magnetic polyacrylamide microcomposite adsorbent. J. Water Process Eng. 4, 47 (2014). doi: 10.1016/j.jwpe.2014.09.003 CrossRefGoogle Scholar
  25. 25.
    Zhao, F.; Repo, E.; Yin, D.; Sillanpaa, M.E.T.: Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms. J. Coll. Interface Sci. 409, 174 (2013). doi: 10.1016/j.jcis.2013.07.062 CrossRefGoogle Scholar
  26. 26.
    Mane, V.S.; Mall, I.D.; Srivastava, V.C.: Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. J. Environ. Manag. 84, 390 (2007). doi: 10.1016/j.jenvman.2006.06.024 CrossRefGoogle Scholar
  27. 27.
    Atkins, P.: Physical Chemistry, 6th edn. Oxford University Press, London (1999)Google Scholar
  28. 28.
    Lagergren, S.: About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1 (1898)Google Scholar
  29. 29.
    Ho, Y.S.; McKay, G.: Pseudo-second order model for sorption processes. Process. Biochem. 34, 451 (1999). doi: 10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  30. 30.
    Weber, W. J.; Morris, J. C.: J. Sani. Eng. Div. 89, 31 (1963)
  31. 31.
    Donia, A.M.; Atia, A.A.; Al-amrani, W.A.; El-Nahas, A.M.: Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J. Hazard. Mat. 161, 1544 (2009). doi: 10.1016/j.jhazmat.2008.05.042 CrossRefGoogle Scholar
  32. 32.
    Ahmad, A.; Rafatullah, M.; Sulaiman, O.; Ibrahim, M.H.; Hashim, R.: Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J. Hazard. Mat. 170, 357 (2009). doi: 10.1016/j.jhazmat.2009.04.087 CrossRefGoogle Scholar
  33. 33.
    Raza, W.; Haque, M.M.; Muneer, M.; Fleisch, M.; Hakki, A.; Bahnemann, D.: Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped \(\text{TiO}_{2}\) hybrid carbon spheres. J. Alloys Compd. 632, 837 (2015). doi: 10.1016/j.jallcom.2015.01.222 CrossRefGoogle Scholar
  34. 34.
    Qureshi, S.Z.; Khan, M.A.; Rahman, N.: Synthesis and ion exchange behaviour of a new three-component ion exchange material: zirconium (IV) arsenate vanadate. Bull. Chem. Soc. Jpn. 68, 1613–1617 (1995)Google Scholar
  35. 35.
    Socrates, G.: Infrared Characteristic Group Frequencies. Wiley, New York (1980). 145Google Scholar
  36. 36.
    Nabi, S.A.; Shahadata, M.; Bushra, R.; Oves, M.; Ahmed, F.: synthesis and characterization of polyanilineZr(IV)sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chem. Eng. J. 173, 706–71 (2011)Google Scholar
  37. 37.
    Apopei, D.F.; Dinu, M.V.; Trochimczuk, A.W.; Dragan, E.S.: Sorption isotherms of heavy metal ions onto semi-interpenetrating polymer network cryogels based on polyacrylamide and anionically modified potato starch. Ind. Eng. Chem. Res. 51, 10462 (2012). doi: 10.1021/ie301254z CrossRefGoogle Scholar
  38. 38.
    Khan, M.D.A.; Akhtar, A.; Nabi, S.A.: Kinetics and thermodynamics of alkaline earth and heavy metal ion exchange under particle diffusion controlled phenomenon using polyaniline-sn(iv)iodophosphate nanocomposite. J. Chem. Eng. Data 59, 2677 (2014). doi: 10.1021/je500523n CrossRefGoogle Scholar
  39. 39.
    Irfan, M.; Islam, M.U.; Ali, I.; Iqbal, M.A.; Karamat, N.; Khan, H.M.: Effect of \(\text{Y}_{2}\text{O}_{3}\) doping on the electrical transport properties of \(\text{Sr}_{2}\text{MnNiFe}_{12}\text{O}_{22}\) Y-type hexaferrite. Cur. App. Phy. 14, 112 (2014). doi: 10.1016/j.cap.2013.10.010 CrossRefGoogle Scholar
  40. 40.
    Baral, A. K.; Sankaranarayanan, V.: Ion transport and dielectric relaxation studies in nanocrystalline \(\text{Ce}_{0.8}\text{Ho}_{0.2}\text{O}_{2-\delta}\) material. Phys. B: Cond. Mater. 404, 1674–1678 (2009) doi: 10.1016/j.physb.2009.02.002
  41. 41.
    Baral, A. K.; Narayanan, S.; Ramezanipour, F.; Thangadurai, V.: Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy, Phy. Chem. Chem. Phy. 16, 11356 (2014) DOI: 10.1039/C4CP00418C
  42. 42.
    Khan, M.D.A.; Akhtar, A.; Nabi, S.A.: Investigation of the electrical conductivity and optical property of polyaniline-based nanocomposite and its application as an ethanol vapor sensor. New J. Chem. 39, 3728 (2015). doi: 10.1039/C4NJ02260B CrossRefGoogle Scholar
  43. 43.
    Hashim, M.; Alimuddin, Kumar S.; Shirsath, S. E.; Kotnala, R.K.; Shah, J.; Kumar, R.: Synthesis and characterizations of Ni2þ substituted cobalt ferrite nanoparticles, Mat. Chem. Phys. 139, 364 (2013). doi: 10.1016/j.matchemphys.2012.09.019
  44. 44.
    Yin, H.; Yu, K.; Song, C.; Huang, R.; Zhu, Z.: Synthesis of Au-Decorated V2O5@ZnO Heteronanostructures and Enhanced Plasmonic Photocatalytic Activity, ACS Appl. Mater. Interfaces. 6, 14851 (2014) doi: 10.1021/am501549n
  45. 45.
    Raza, W.; Haque, M.M.; Muneer, M.: Synthesis of visible light driven ZnO: Characterization and photocatalytic performance. Appl. Surf. Sci. 322, 215 (2014). doi: 10.1016/j.apsusc.2014.10.067
  46. 46.
    Mukhlish, M.Z.B.; Najnin, F.; Rahman, M.M.; Uddin, M.J.: Photocatalytic degradation of different dyes using \(\text{TiO}_{2}\) with high surface area: a kinetic study. J. Sci. Res. 5, 301 (2013). doi: 10.3329/jsr.v5i2.11641 Google Scholar
  47. 47.
    Tang, J.; Huang, Y.; Gong, Y.; Lyu, H.; Wang, Q.; Ma, J.: Preparation of a novel graphene oxide/Fe–Mn composite and its application for aqueous Hg(II) removal. J. Hazard. Mater. 316, 151–158 (2016). doi: 10.1016/j.jhazmat.2016.05.028 CrossRefGoogle Scholar
  48. 48.
    Hadavifar, M.; Bahramifar, N.; Younesi, H.; Rastakhiz, M.; Li, Q.; Yu, J.; Eftekhari, E.: Removal of mercury(II) and cadmium(II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes. J. Taiwan Inst. Chem. Eng. 67, 397–405 (2016). doi: 10.1016/j.jtice.2016.08.029 CrossRefGoogle Scholar
  49. 49.
    Choi, J.M.; Jeong, D.; Cho, E.; Jun, B.; Park, S.; Yu, J.; Tahir, M.N.; Jung, S.: Chemically functionalized silica gel with alkynyl terminated monolayers as an efficient new material for removal of mercury ions from water. J. Ind. Eng. Chem. 35, 376–382 (2016). doi: 10.1016/j.jiec.2016.01.020 CrossRefGoogle Scholar
  50. 50.
    Shafiabadi, M.; Dashti, A.; Tayebi, H.: Removal of Hg (II) from aqueous solution using polypyrrole/SBA-15 nanocomposite: Experimental and modeling. Synth. Meter. 212, 154–160 (2016). doi: 10.1016/j.synthmet.2015.12.020 CrossRefGoogle Scholar
  51. 51.
    Yao, X.; Wang, H.; Ma, Z.; Liu, M.; Zhao, X.; Jia, D.: Adsorption of Hg(II) from aqueous solution using thiourea functionalized chelating fiber, Chin. J. Chem. Eng. (2016)Google Scholar
  52. 52.
    Kumara, A. S. K.; Jiang, S.; Tseng, W.: Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg(II), J.Env. Chemi. Eng. 4, 2, 2052–2065 (2016)
  53. 53.
    Liu, L.; Ding, L.; Wu, X.; Deng, F.; Kang, R.; Luo, X.: Enhancing the Hg(II) removal efficiency from real wastewater by novel thymine-grafted reduced graphene oxide complexes. Ind. Eng. Chem. Res. 55, 6845–6853 (2016). doi: 10.1021/acs.iecr.6b01359 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • Seraj Anwar Ansari
    • 1
  • Fauzia Khan
    • 1
  • Anees Ahmad
    • 1
    Email author
  • Waseem Raza
    • 2
  • Muneer Ahmad
    • 2
  1. 1.Industrial Chemistry Research Laboratory, Department of ChemistryAMUAligarhIndia
  2. 2.Organic Chemistry Research Laboratory, Department of ChemistryAMUAligarhIndia

Personalised recommendations