Screening and Evaluation of Poly(3-hydroxybutyrate) with Rhodococcus equi Using Different Carbon Sources
- 84 Downloads
- 3 Citations
Abstract
A process has been developed for the production of poly(3-hydroxybutyrate) (PHB) with bacterium Rhodococcus equi using crude palm kernel oil (CPKO) as a carbon source. Such process will enable the production of biodegradable biopolymers to overcome some of the limitations associated with the use of petroleum-based plastics. A pure isolate was obtained from a fertile soil and was screened using the Nile Red stain for its ability for polyhydroxyalkanoates production. The isolate was identified by morphological characterization and biochemical tests. Identification by 16S rRNA has confirmed the species as Rhodococcus equi. Different carbon sources were used in an attempt to find the best one for the biosynthesis of PHB. The microscopic observations of PHB inside the bacteria were checked by the phase-contrast light microscope which showed a bright appearance. Moreover, the fluorescent microscope showed a bright orange fluorescence, and the transmission electron microscope showed white PHB granules with different sizes and different numbers within the bacteria cells. Rhodococcus equi gave the maximum cell dry mass as 1.43 g/L with the maximum PHB content as 38.1 % by weight when CPKO (1 %) was used as a carbon source.
Keywords
Rhodococcus equi Poly(3-hydroxybutyrate) Crude palm kernel oil Biodegradable biopolymers Nile RedPreview
Unable to display preview. Download preview PDF.
References
- 1.Tan, G.Y.A.; Chen, C.L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.M.N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.Y.: Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6, 706–754 (2014)CrossRefGoogle Scholar
- 2.Zinn, M.; Witholt, B.; Egli, T.: Occurrence, synthesis and medical application of bacterial Polyhydroxyalkanoates. Adv. Drug Deliv. Rev. 53, 5–21 (2010)CrossRefGoogle Scholar
- 3.Khanna, S.; Srivastava, A.K.: Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 40, 607–619 (2005)CrossRefGoogle Scholar
- 4.Lu, J.; Tappel, R.C.; Nomura, C.T.: Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym. Rev. 49, 226–248 (2009)CrossRefGoogle Scholar
- 5.Lee, K.M.; Gilmore, D.F.: Formulation and process modeling of biopolymer (polyhydroxyalkanoates: PHAs) production from industrial wastes by novel crossed experimental design. Process Biochem. 40, 226–249 (2005)Google Scholar
- 6.Escapa, I.F.; Morales, V.; Martino, V.P.; Pollet, E.; Avérous, L.; García, J.L.; Prieto, M.A.: Disruption of \(\upbeta \)-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl. Microbiol. Biotechnol. 89, 1583–1598 (2011)CrossRefGoogle Scholar
- 7.Wei, Y.H.; Chen, W.C.; Huang, C.K.; Wu, H.S.; Sun, Y.M.; Lo, C.W.; Janarthanan, O.M.: Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int. J. Mol. Sci. 12, 252–265 (2011)CrossRefGoogle Scholar
- 8.Lee, S.L.: Review on bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–4 (1994)CrossRefGoogle Scholar
- 9.Cao, Y.; Zhang, X.: Production of long-chain hydroxyl fatty acids by microbial conversion. Appl. Microbiol. Biotechnol. 97, 3323–3331 (2013)CrossRefGoogle Scholar
- 10.Ueda, S.; Yabutani, T.; Maehara, A.; Yamane, S.: Molecular analysis of the poly(3-hydroxyalkanoate) synthase gene from a methylotrophic bacterium, Paracoccus denitrificans. J. Bacteriol. 178, 774–779 (1996)CrossRefGoogle Scholar
- 11.Chen, G.Q.; Wu, Q.: Review: the application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26, 6565–6578 (2005)CrossRefGoogle Scholar
- 12.Bugnicour, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V.: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8, 791–808 (2014)CrossRefGoogle Scholar
- 13.Güven, E.Ö.; Demirbilek, M.; Saglam, N.; Karahaliloglu, Z.; Erdal, E.; Bayram, C.; Denkbas, E.B.: Preparation and characterization of polyhydroxybutyrate scaffolds to be used in tissue engineering applications. Hacet. J. Biol. Chem. 36, 305–311 (2008)Google Scholar
- 14.Wang, Z.; Wu, H.; Chen, J.; Zhang, J.; Chen, G.-Q.: A novel self-cleaving phasin tag for purification of recombinant proteins Based on hydrophobic nanoparticles. Lab. Chip. 8, 1957–1962 (2008)CrossRefGoogle Scholar
- 15.Brigham, C.J.; Sinskey, A.J.: Applications of polyhydroxyalkanoates in the medical industry. Int. J. Biotechnol. Wellness Ind. 1, 53–60 (2012)Google Scholar
- 16.Koller, M.; Rodríguez-Contreras, A.: Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng. Life Sci. 15, 558–581 (2012)CrossRefGoogle Scholar
- 17.Singh, R.: Isolation and characterization of efficient poly-\(\upbeta \)-hydroxybutyrate (PHB) synthesizing bacteria from agricultural and industrial land. Int. J. Curr. Microbiol. Appl. Sci. 3, 304–308 (2014)Google Scholar
- 18.Ostle, G.; Holt, J.G.: Nile Blue A as a fluorescent stain for poly-\(\upbeta \)-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241 (1982)Google Scholar
- 19.Bhuwal, A.K.; Singh, G.; Aggarwal, N.K.; Goyal, V.; Yadav. A.: Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. (2013). doi:10.1155/2013/75282110
- 20.Spiekermann, P.; Rehm, B.H.; Kalscheuer, R.; Baumeister, D.; Steinbuchel, A.: A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 171, 73–80 (1999)CrossRefGoogle Scholar
- 21.Mozumder, M.S.I.; Garcia-Gonzalez, L.; Wever, H.D.; Volcke, E.I.P.: Poly(3-hydroxybutyrate) (PHB) production from \(\text{ CO }_{2}\): Model development and process optimization. Biochem. Eng J. 98, 107–116 (2015)CrossRefGoogle Scholar
- 22.Loo, C.Y.; Sudesh, K.: Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays. Polym. J. 2, 31–57 (2007)Google Scholar
- 23.Chaitanya, K.; Mahmood, S.K.; Kausar, R.; Sunilkumar, N.: Biotechnological production of polyhydroxyalkonates by various isolates: a review. Int. J. Pharm. Sci. Invent. 3, 1–11 (2014)Google Scholar
- 24.Alvarez, H.M. (ed.): Biology of Rhodococcus. Springer, Heidelberg (2010)Google Scholar
- 25.Kurosawa, K.; Radek, A.; Plassmeier, J.K.; Sinskey, A.J.: Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. Biotechnol. Biofuels 8, 1–11 (2015)CrossRefGoogle Scholar
- 26.Hernandez, M.A.; Alvarez, H.M.: Glycogen formation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630. FEMS Microbiol. Lett. 312, 93–99 (2010)CrossRefGoogle Scholar
- 27.Alvarez, H.M.; Kalscheuer, R.; Steinbüchel, A.: Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99, 239–246 (1997)CrossRefGoogle Scholar
- 28.Fuchtenbusch, B.; Steinbuchel, A.: Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber. Appl. Microbiol. Biotechnol. 52, 91–95 (1999)CrossRefGoogle Scholar
- 29.Altaee, N.; Fadil, A.; Yousif, E.; Sudesh, K.: Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil. J. Taibah Univ. Sci. 10, 543–550 (2016)CrossRefGoogle Scholar
- 30.Smith, K.; Al-Zuhairi, A.J.; El-Hiti, G.A.; Alshammari, M.B.: Comparison of cyclic and polymeric disulfides as catalysts for the regioselective chlorination of phenols. J. Sulfur Chem. 36, 74–85 (2015)CrossRefGoogle Scholar
- 31.Balakit, A.A.; Ahmed, A.; El-Hiti, G.A.; Smith, K.; Yousif, E.: Synthesis of new thiophene derivatives and their use as photostabilizers for rigid poly(vinyl chloride). Int. J. Polym. Sci. (2015). doi:10.1155/2015/510390 Google Scholar
- 32.Yousif, E.; El-Hiti, G.A.; Haddad, R.; Balakit, A.A.: Photochemical stability and photostabilizing efficiency of poly(methyl methacrylate) based on 2-(6-methoxynaphthalen-2-yl)propanoate metal ion complexes. Polymers 7, 1005–1019 (2015)CrossRefGoogle Scholar
- 33.Yousif, E.; El-Hiti, G.A.; Hussain, Z.; Altaie, A.: Viscoelastic, spectroscopic and microscopic study of the photo irradiation effect on the stability of PVC in presence of sulfamethoxazole Schiff’s bases. Polymers 7, 2190–2204 (2015)CrossRefGoogle Scholar
- 34.Yousif, E.; Hasan, A.; El-Hiti, G.A.: Spectroscopic, physical and topography of photochemical process of PVC films in the presence of Schiff base metal complexes. Polymers 8, 203 (2016). doi:10.3390/polym8060203 CrossRefGoogle Scholar
- 35.Doi, Y.; Kitamura, S.; Abe, H.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822–4828 (1995)CrossRefGoogle Scholar
- 36.Kahar, P.; Tsuge, T.; Taguchi, K.; Doi, Y.: High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad Stab. 83, 79–86 (2004)CrossRefGoogle Scholar
- 37.Holt, J.G.; Sneath, P.H.A.; Mair, N.S.; Sharpe, M.E.: Bergey’s Manual of Systematic Bacteriology, 9th edn. Williams & Wilkins, Baltimore (1994)Google Scholar
- 38.de Silva, L.; Miyata, M.; Sato, D.N.; Santos, A.C.B.; Mendes, N.H.; Leite, C.Q.F.: Rhodococcus equi isolation from sputum of patients with suspected tuberculosis. Mem. Inst. Oswaldo. Cruz. 105, 199–202 (2010)CrossRefGoogle Scholar
- 39.Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J.: Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. J. Appl. Environ. Microbiol. 74, 2461–2470 (2008)CrossRefGoogle Scholar
- 40.Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997)CrossRefGoogle Scholar
- 41.Kato, M.; Bao, H.J.; Kang, C.K.; Fukui, T.; Doi, Y.: Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. Appl. Microbiol. Biotechnol. 45, 363–370 (1996)CrossRefGoogle Scholar
- 42.Braunegg, G.; Sonnleitner, B.; Lafferty, R.M.: A rapid gas chromatographic method for the determination of poly-\(\upbeta \)-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37 (1978)CrossRefGoogle Scholar
- 43.McDowell, E.M.; Trump, B.F.: Histologic fixatives suitable for diagnostic light and electron-microscopy. Arch. Pathol. Lab. Med. 100, 405–414 (1976)Google Scholar
- 44.Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)CrossRefGoogle Scholar
- 45.Amirul, A.A.; Yahya, A.R.M.; Sudesh, K.; Azizan, M.N.M.; Majid, M.I.A.: Isolation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) producer from Malaysian environment using c-butyrolactone as carbon source. World J. Microbiol. Biotechnol. 25, 1199–1206 (2009)CrossRefGoogle Scholar
- 46.Doan, D.V.; Nguyen, B.T.: Polyhydroxyalkanoates production by a bacterium isolated from mangrove soil samples collected from Quang Ninh province. J. Viet. Environ. 3, 76–79 (2012)Google Scholar
- 47.Berlanga, M.; Montero, M.T.; Fernández-Borrell, J.; Guerrero, R.: Rapid spectrofluorometric screening of polyhydroxyalkanoate producing bacteria from microbial mats. Int. Microbiol. 9, 95–102 (2006)Google Scholar
- 48.Balows, A.; Hausler Jr., W.J.; Herrmann, K.L.; Isenberg, H.D.; Shadomy, H.J.: Manual of Clinical Microbiology, 5th edn. ASM, Washington, DC (1991)Google Scholar
- 49.Sudesh, K.; Iwata, T.: Sustainability of biobased and biodegradable plastics. Clean-Soil Air Water 36, 433–442 (2008)CrossRefGoogle Scholar
- 50.Bhubalan, K.; Kam, Y.C.; Yong, K.H.; Sudesh, K.: Cloning and expression of the PHA synthase gene from a locally isolated Chromobacterium sp. USM2. Malays. J. Microbiol. 6, 81–90 (2010)Google Scholar
- 51.Sudesh, K.: Polyhydroxyalkanoates from Palm Oils: Biodegradable Plastics. Springer, Berlin (2013)CrossRefGoogle Scholar
- 52.Jain, S.; Singh, A.K.; Tiwari, A.: Production of medium chain length polyhydroxyalkanoates from palmitic acid using Ralstonia eutropha by fed batch culture. Int. J. Chem. Sci. Appl. 4, 152–158 (2013)Google Scholar
- 53.Wong, Y.M.; Brigham, C.J.; Rha, C.; Sinskey, A.J.; Sudesh, K.: Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour. Technol. 121, 320–327 (2012)Google Scholar
- 54.Pieper, U.; Steinbüchel, A.: Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of Gram-positive bacterium Rhodococcus rubber. FEMS Microbiol. Lett. 96, 73–80 (1992)CrossRefGoogle Scholar
- 55.Uillaguamán, J.; Delgado, O.; Mattiasson, B.; Hatti-Kaul, R.: Poly(\(\upbeta \)-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. Enzyme Microb. Technol. 38, 148–154 (2006)CrossRefGoogle Scholar
- 56.Bhubalan, K.; Chuah, J.-A.; Shozui, F.; Brigham, C.J.; Taguchia, S.; Sinskey, A.J.; Rha, C.; Sudesh, K.: Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium sp. Strain USM2. Appl. Environ. Microbiol. 77, 2926–2933 (2011)CrossRefGoogle Scholar