Arabian Journal for Science and Engineering

, Volume 42, Issue 6, pp 2371–2379 | Cite as

Screening and Evaluation of Poly(3-hydroxybutyrate) with Rhodococcus equi Using Different Carbon Sources

Research Article - Chemistry

Abstract

A process has been developed for the production of poly(3-hydroxybutyrate) (PHB) with bacterium Rhodococcus equi using crude palm kernel oil (CPKO) as a carbon source. Such process will enable the production of biodegradable biopolymers to overcome some of the limitations associated with the use of petroleum-based plastics. A pure isolate was obtained from a fertile soil and was screened using the Nile Red stain for its ability for polyhydroxyalkanoates production. The isolate was identified by morphological characterization and biochemical tests. Identification by 16S rRNA has confirmed the species as Rhodococcus equi. Different carbon sources were used in an attempt to find the best one for the biosynthesis of PHB. The microscopic observations of PHB inside the bacteria were checked by the phase-contrast light microscope which showed a bright appearance. Moreover, the fluorescent microscope showed a bright orange fluorescence, and the transmission electron microscope showed white PHB granules with different sizes and different numbers within the bacteria cells. Rhodococcus equi gave the maximum cell dry mass as 1.43 g/L with the maximum PHB content as 38.1 % by weight when CPKO (1 %) was used as a carbon source.

Keywords

Rhodococcus equi Poly(3-hydroxybutyrate) Crude palm kernel oil Biodegradable biopolymers Nile Red 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tan, G.Y.A.; Chen, C.L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.M.N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.Y.: Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6, 706–754 (2014)CrossRefGoogle Scholar
  2. 2.
    Zinn, M.; Witholt, B.; Egli, T.: Occurrence, synthesis and medical application of bacterial Polyhydroxyalkanoates. Adv. Drug Deliv. Rev. 53, 5–21 (2010)CrossRefGoogle Scholar
  3. 3.
    Khanna, S.; Srivastava, A.K.: Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 40, 607–619 (2005)CrossRefGoogle Scholar
  4. 4.
    Lu, J.; Tappel, R.C.; Nomura, C.T.: Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym. Rev. 49, 226–248 (2009)CrossRefGoogle Scholar
  5. 5.
    Lee, K.M.; Gilmore, D.F.: Formulation and process modeling of biopolymer (polyhydroxyalkanoates: PHAs) production from industrial wastes by novel crossed experimental design. Process Biochem. 40, 226–249 (2005)Google Scholar
  6. 6.
    Escapa, I.F.; Morales, V.; Martino, V.P.; Pollet, E.; Avérous, L.; García, J.L.; Prieto, M.A.: Disruption of \(\upbeta \)-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl. Microbiol. Biotechnol. 89, 1583–1598 (2011)CrossRefGoogle Scholar
  7. 7.
    Wei, Y.H.; Chen, W.C.; Huang, C.K.; Wu, H.S.; Sun, Y.M.; Lo, C.W.; Janarthanan, O.M.: Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int. J. Mol. Sci. 12, 252–265 (2011)CrossRefGoogle Scholar
  8. 8.
    Lee, S.L.: Review on bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–4 (1994)CrossRefGoogle Scholar
  9. 9.
    Cao, Y.; Zhang, X.: Production of long-chain hydroxyl fatty acids by microbial conversion. Appl. Microbiol. Biotechnol. 97, 3323–3331 (2013)CrossRefGoogle Scholar
  10. 10.
    Ueda, S.; Yabutani, T.; Maehara, A.; Yamane, S.: Molecular analysis of the poly(3-hydroxyalkanoate) synthase gene from a methylotrophic bacterium, Paracoccus denitrificans. J. Bacteriol. 178, 774–779 (1996)CrossRefGoogle Scholar
  11. 11.
    Chen, G.Q.; Wu, Q.: Review: the application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26, 6565–6578 (2005)CrossRefGoogle Scholar
  12. 12.
    Bugnicour, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V.: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8, 791–808 (2014)CrossRefGoogle Scholar
  13. 13.
    Güven, E.Ö.; Demirbilek, M.; Saglam, N.; Karahaliloglu, Z.; Erdal, E.; Bayram, C.; Denkbas, E.B.: Preparation and characterization of polyhydroxybutyrate scaffolds to be used in tissue engineering applications. Hacet. J. Biol. Chem. 36, 305–311 (2008)Google Scholar
  14. 14.
    Wang, Z.; Wu, H.; Chen, J.; Zhang, J.; Chen, G.-Q.: A novel self-cleaving phasin tag for purification of recombinant proteins Based on hydrophobic nanoparticles. Lab. Chip. 8, 1957–1962 (2008)CrossRefGoogle Scholar
  15. 15.
    Brigham, C.J.; Sinskey, A.J.: Applications of polyhydroxyalkanoates in the medical industry. Int. J. Biotechnol. Wellness Ind. 1, 53–60 (2012)Google Scholar
  16. 16.
    Koller, M.; Rodríguez-Contreras, A.: Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng. Life Sci. 15, 558–581 (2012)CrossRefGoogle Scholar
  17. 17.
    Singh, R.: Isolation and characterization of efficient poly-\(\upbeta \)-hydroxybutyrate (PHB) synthesizing bacteria from agricultural and industrial land. Int. J. Curr. Microbiol. Appl. Sci. 3, 304–308 (2014)Google Scholar
  18. 18.
    Ostle, G.; Holt, J.G.: Nile Blue A as a fluorescent stain for poly-\(\upbeta \)-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241 (1982)Google Scholar
  19. 19.
    Bhuwal, A.K.; Singh, G.; Aggarwal, N.K.; Goyal, V.; Yadav. A.: Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. (2013). doi:10.1155/2013/75282110
  20. 20.
    Spiekermann, P.; Rehm, B.H.; Kalscheuer, R.; Baumeister, D.; Steinbuchel, A.: A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 171, 73–80 (1999)CrossRefGoogle Scholar
  21. 21.
    Mozumder, M.S.I.; Garcia-Gonzalez, L.; Wever, H.D.; Volcke, E.I.P.: Poly(3-hydroxybutyrate) (PHB) production from \(\text{ CO }_{2}\): Model development and process optimization. Biochem. Eng J. 98, 107–116 (2015)CrossRefGoogle Scholar
  22. 22.
    Loo, C.Y.; Sudesh, K.: Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays. Polym. J. 2, 31–57 (2007)Google Scholar
  23. 23.
    Chaitanya, K.; Mahmood, S.K.; Kausar, R.; Sunilkumar, N.: Biotechnological production of polyhydroxyalkonates by various isolates: a review. Int. J. Pharm. Sci. Invent. 3, 1–11 (2014)Google Scholar
  24. 24.
    Alvarez, H.M. (ed.): Biology of Rhodococcus. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Kurosawa, K.; Radek, A.; Plassmeier, J.K.; Sinskey, A.J.: Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. Biotechnol. Biofuels 8, 1–11 (2015)CrossRefGoogle Scholar
  26. 26.
    Hernandez, M.A.; Alvarez, H.M.: Glycogen formation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630. FEMS Microbiol. Lett. 312, 93–99 (2010)CrossRefGoogle Scholar
  27. 27.
    Alvarez, H.M.; Kalscheuer, R.; Steinbüchel, A.: Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99, 239–246 (1997)CrossRefGoogle Scholar
  28. 28.
    Fuchtenbusch, B.; Steinbuchel, A.: Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber. Appl. Microbiol. Biotechnol. 52, 91–95 (1999)CrossRefGoogle Scholar
  29. 29.
    Altaee, N.; Fadil, A.; Yousif, E.; Sudesh, K.: Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil. J. Taibah Univ. Sci. 10, 543–550 (2016)CrossRefGoogle Scholar
  30. 30.
    Smith, K.; Al-Zuhairi, A.J.; El-Hiti, G.A.; Alshammari, M.B.: Comparison of cyclic and polymeric disulfides as catalysts for the regioselective chlorination of phenols. J. Sulfur Chem. 36, 74–85 (2015)CrossRefGoogle Scholar
  31. 31.
    Balakit, A.A.; Ahmed, A.; El-Hiti, G.A.; Smith, K.; Yousif, E.: Synthesis of new thiophene derivatives and their use as photostabilizers for rigid poly(vinyl chloride). Int. J. Polym. Sci. (2015). doi:10.1155/2015/510390 Google Scholar
  32. 32.
    Yousif, E.; El-Hiti, G.A.; Haddad, R.; Balakit, A.A.: Photochemical stability and photostabilizing efficiency of poly(methyl methacrylate) based on 2-(6-methoxynaphthalen-2-yl)propanoate metal ion complexes. Polymers 7, 1005–1019 (2015)CrossRefGoogle Scholar
  33. 33.
    Yousif, E.; El-Hiti, G.A.; Hussain, Z.; Altaie, A.: Viscoelastic, spectroscopic and microscopic study of the photo irradiation effect on the stability of PVC in presence of sulfamethoxazole Schiff’s bases. Polymers 7, 2190–2204 (2015)CrossRefGoogle Scholar
  34. 34.
    Yousif, E.; Hasan, A.; El-Hiti, G.A.: Spectroscopic, physical and topography of photochemical process of PVC films in the presence of Schiff base metal complexes. Polymers 8, 203 (2016). doi:10.3390/polym8060203 CrossRefGoogle Scholar
  35. 35.
    Doi, Y.; Kitamura, S.; Abe, H.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822–4828 (1995)CrossRefGoogle Scholar
  36. 36.
    Kahar, P.; Tsuge, T.; Taguchi, K.; Doi, Y.: High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad Stab. 83, 79–86 (2004)CrossRefGoogle Scholar
  37. 37.
    Holt, J.G.; Sneath, P.H.A.; Mair, N.S.; Sharpe, M.E.: Bergey’s Manual of Systematic Bacteriology, 9th edn. Williams & Wilkins, Baltimore (1994)Google Scholar
  38. 38.
    de Silva, L.; Miyata, M.; Sato, D.N.; Santos, A.C.B.; Mendes, N.H.; Leite, C.Q.F.: Rhodococcus equi isolation from sputum of patients with suspected tuberculosis. Mem. Inst. Oswaldo. Cruz. 105, 199–202 (2010)CrossRefGoogle Scholar
  39. 39.
    Frank, J.A.; Reich, C.I.; Sharma, S.; Weisbaum, J.S.; Wilson, B.A.; Olsen, G.J.: Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. J. Appl. Environ. Microbiol. 74, 2461–2470 (2008)CrossRefGoogle Scholar
  40. 40.
    Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997)CrossRefGoogle Scholar
  41. 41.
    Kato, M.; Bao, H.J.; Kang, C.K.; Fukui, T.; Doi, Y.: Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. Appl. Microbiol. Biotechnol. 45, 363–370 (1996)CrossRefGoogle Scholar
  42. 42.
    Braunegg, G.; Sonnleitner, B.; Lafferty, R.M.: A rapid gas chromatographic method for the determination of poly-\(\upbeta \)-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37 (1978)CrossRefGoogle Scholar
  43. 43.
    McDowell, E.M.; Trump, B.F.: Histologic fixatives suitable for diagnostic light and electron-microscopy. Arch. Pathol. Lab. Med. 100, 405–414 (1976)Google Scholar
  44. 44.
    Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)CrossRefGoogle Scholar
  45. 45.
    Amirul, A.A.; Yahya, A.R.M.; Sudesh, K.; Azizan, M.N.M.; Majid, M.I.A.: Isolation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) producer from Malaysian environment using c-butyrolactone as carbon source. World J. Microbiol. Biotechnol. 25, 1199–1206 (2009)CrossRefGoogle Scholar
  46. 46.
    Doan, D.V.; Nguyen, B.T.: Polyhydroxyalkanoates production by a bacterium isolated from mangrove soil samples collected from Quang Ninh province. J. Viet. Environ. 3, 76–79 (2012)Google Scholar
  47. 47.
    Berlanga, M.; Montero, M.T.; Fernández-Borrell, J.; Guerrero, R.: Rapid spectrofluorometric screening of polyhydroxyalkanoate producing bacteria from microbial mats. Int. Microbiol. 9, 95–102 (2006)Google Scholar
  48. 48.
    Balows, A.; Hausler Jr., W.J.; Herrmann, K.L.; Isenberg, H.D.; Shadomy, H.J.: Manual of Clinical Microbiology, 5th edn. ASM, Washington, DC (1991)Google Scholar
  49. 49.
    Sudesh, K.; Iwata, T.: Sustainability of biobased and biodegradable plastics. Clean-Soil Air Water 36, 433–442 (2008)CrossRefGoogle Scholar
  50. 50.
    Bhubalan, K.; Kam, Y.C.; Yong, K.H.; Sudesh, K.: Cloning and expression of the PHA synthase gene from a locally isolated Chromobacterium sp. USM2. Malays. J. Microbiol. 6, 81–90 (2010)Google Scholar
  51. 51.
    Sudesh, K.: Polyhydroxyalkanoates from Palm Oils: Biodegradable Plastics. Springer, Berlin (2013)CrossRefGoogle Scholar
  52. 52.
    Jain, S.; Singh, A.K.; Tiwari, A.: Production of medium chain length polyhydroxyalkanoates from palmitic acid using Ralstonia eutropha by fed batch culture. Int. J. Chem. Sci. Appl. 4, 152–158 (2013)Google Scholar
  53. 53.
    Wong, Y.M.; Brigham, C.J.; Rha, C.; Sinskey, A.J.; Sudesh, K.: Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour. Technol. 121, 320–327 (2012)Google Scholar
  54. 54.
    Pieper, U.; Steinbüchel, A.: Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of Gram-positive bacterium Rhodococcus rubber. FEMS Microbiol. Lett. 96, 73–80 (1992)CrossRefGoogle Scholar
  55. 55.
    Uillaguamán, J.; Delgado, O.; Mattiasson, B.; Hatti-Kaul, R.: Poly(\(\upbeta \)-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. Enzyme Microb. Technol. 38, 148–154 (2006)CrossRefGoogle Scholar
  56. 56.
    Bhubalan, K.; Chuah, J.-A.; Shozui, F.; Brigham, C.J.; Taguchia, S.; Sinskey, A.J.; Rha, C.; Sudesh, K.: Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium sp. Strain USM2. Appl. Environ. Microbiol. 77, 2926–2933 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  1. 1.Department of Biotechnology, College of ScienceAl-Nahrain UniversityBaghdadIraq
  2. 2.Department of Horticulture and Garden Engineering, College of AgricultureAl-Qasim Green UniversityBabilIraq
  3. 3.Cornea Research Chair, Department of Optometry, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  4. 4.School of Biological SciencesUniversiti Sains MalaysiaGelugorMalaysia
  5. 5.Department of Chemistry, College of ScienceAl-Nahrain UniversityBaghdadIraq

Personalised recommendations