Arabian Journal for Science and Engineering

, Volume 42, Issue 10, pp 4307–4315 | Cite as

Poly(Vinyl Chloride) Doped by 2-(4-Isobutylphenyl)Propanoate Metal Complexes: Enhanced Resistance to UV Irradiation

Research Article - Chemistry

Abstract

The photostabilization of poly(vinyl chloride) (PVC) films in the presence of 2-(4-isobutylphenyl)propanoate metal complexes (0.5 wt%) was investigated at room temperature under ultraviolet radiation (\(\lambda = 320 \hbox { nm}\)) for 300 h. The changes in various functional groups indices, viscosity average molecular weight and quantum yield of the chain scission of PVC films were monitored upon irradiation. The metal complexes used showed decreases in PVC films photodegradation. The quantum yield for the chain scission was measured exhibiting a range of \(2.054 \times 10^{-6}\) and \(1.005 \times 10^{-7}\). The photostabilization of poly(vinyl chloride) in the presence of metal complexes was in the order \(\hbox {ZnL}_{2} (\hbox {H}_{2}\hbox {O})_{2}< \hbox {CdL}_{2} (\hbox {H}_{2}\hbox {O})_{2}<\hbox {CuL}_{2}< \hbox {SnL}_{2} (\hbox {H}_{2}\hbox {O})_{2}<\hbox {NiL}_{2} (\hbox {H}_{2}\hbox {O})_{2}\). The metal complexes can act as hydrogen chloride scavengers, UV absorbers, peroxide decomposers and also as radical scavengers to enhance PVC photostability.

Keywords

Poly(vinyl chloride) Photostabilization FTIR spectroscopy Chain scission Viscosity average molecular weight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allsopp, M.W.; Vianello, G.: Poly(Vinyl Chloride in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim (2012)Google Scholar
  2. 2.
    Titow, W.V.: PVC Technology, 4th edn. Springer, Essex (1984)CrossRefGoogle Scholar
  3. 3.
    Sears, J.K.; Darby, J.R.: The Technology of Plasticizers. Wiley, New York (1982)Google Scholar
  4. 4.
    Lian, Y.; Zhang, Y.; Peng, Z.; Zhang, X.; Fan, R.; Zhang, Y.: Properties and morphologies of PVC/nylon terpolymer blends. J. Appl. Polym. Sci. 80, 2823–2832 (2001)CrossRefGoogle Scholar
  5. 5.
    Homkhiew, C.; Ratanawilai, T.; Thongruang, W.: Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour. Ind. Crops Prod. 56, 52–59 (2014)CrossRefGoogle Scholar
  6. 6.
    Wang, C.-N.; Torng, J.-H.: Experimental study of the absorption characteristics of some porous fibrous materials. Appl. Acoust. 62, 447–459 (2001)CrossRefGoogle Scholar
  7. 7.
    Jakubowicz, I.; Yarahmadi, N.; Gevert, T.: Effects of accelerated and natural ageing on plasticized poly(vinyl chloride) (PVC). Polym. Degrad. Stab. 66, 415–421 (1999)CrossRefGoogle Scholar
  8. 8.
    Feldman, D.: Polymer weathering: photo-oxidation. J. Polym. Environ. 10, 163–173 (2002)CrossRefGoogle Scholar
  9. 9.
    Griffini, G.; Bella, F.; Nisic, F.; Dragonetti, C.; Roberto, D.; Levi, M.; Bongiovanni, R.; Turri, S.: Multifunctional luminescent down shifting fluoropolymer coatings: a straightforward strategy to improve the UV-Light harvesting ability and long term outdoor stability of organic dye sensitized solar cells. Adv. Energy Mater. (2015). doi:10.1002/aenm.201401312
  10. 10.
    Bella, F.; Griffini, G.; Gerosa, M.; Turri, S.; Bongiovanni, R.: Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings. J. Power Sour. 283, 195–203 (2015)CrossRefGoogle Scholar
  11. 11.
    Shih, H.-K.; Chen, Y.H.; Chu, Y.L.; Cheng, C.-C.; Chang, F.-C.; Zhu, C.-Y.; Kuo, S.-W.: Photo-crosslinking of pendent uracil units provides supramolecular hole injection/transport conducting polymers for highly efficient light-emitting diodes. Polymers 7, 804–818 (2015)CrossRefGoogle Scholar
  12. 12.
    Mosnáček, J.; Kundys, A.; Andicsová, A.: Reversible-deactivation radical polymerization of methyl methacrylate induced by photochemical reduction of various copper catalysts. Polymers 6, 2862–2874 (2014)CrossRefGoogle Scholar
  13. 13.
    Fouassier, J.P.; Lalevée, J.: Photochemical production of interpenetrating polymer networks; simultaneous initiation of radical and cationic polymerization reactions. Polymers 6, 2588–2610 (2014)CrossRefGoogle Scholar
  14. 14.
    Yousif, E.; Haddad, R.: Photodegradation and photostabilization of polymers, especially polystyrene: review. (2013). doi:10.1186/2193-1801-2-398
  15. 15.
    Buruaga, L.; Pomposo, J.A.: Metal-Free polymethyl methacrylate (PMMA) nanoparticles by enamine “click” chemistry at room temperature. Polymers 3, 1673–1683 (2011)CrossRefGoogle Scholar
  16. 16.
    Ratnam, C.T.: Irradiation crosslinking of PVC-ENR blend effect of efficient radical scavenger. Plast. Rubber Compos. 30, 416–420 (2001)CrossRefGoogle Scholar
  17. 17.
    Wypych, G.: PVC Degradation and Stabilization. Chem Tec Publishing, Toronto (2008)Google Scholar
  18. 18.
    Gugumus, F.: Plastics Additives; Gachter, R.; Muller, H.; Ed.; Hanser: Munich, pp. 97–185 (1987)Google Scholar
  19. 19.
    Navarro, R.; Perrino, M.P.; García, C.; Elvira, C.; Gallardo; A.; Reinecke, H.: Opening new gates for the modification of PVC or other PVC derivatives: synthetic strategies for the covalent binding of molecules to PVC. Polymers (2016). doi:10.3390/polym8040152
  20. 20.
    Lim, K.M.; Ching, Y.C.; Gan, S.N.: Effect of palm oil bio-based plasticizer on the morphological, thermal and mechanical properties of poly(vinyl chloride). Polymers 7, 2031–2043 (2015)CrossRefGoogle Scholar
  21. 21.
    Yousif, E.; Hasan, A.; El-Hiti, G.A.: Spectroscopic, physical and topography of photochemical process of PVC films in the presence of Schiff base metal complexes. Polymers (2016). doi:10.3390/polym8060204 Google Scholar
  22. 22.
    Yousif, E.; El-Hiti, G.A.; Hussain, Z.; Altaie, A.: Viscoelastic, spectroscopic and microscopic study of the photo irradiation effect on the stability of PVC in the presence of sulfamethoxazole Schiff’s bases. Polymers 7, 2190–2204 (2015)CrossRefGoogle Scholar
  23. 23.
    Yousif, E.; El-Hiti, G.A.; Haddad, R.; Balakit, A.A.: Photochemical stability and photostabilizing efficiency of poly(methyl methacrylate) based on 2-(6-methoxynaphthalen-2-yl)propanoate metal ion complexes. Polymers 7, 1005–1019 (2015)CrossRefGoogle Scholar
  24. 24.
    Balakit, A.A.; Ahmed, A.; El-Hiti, G.A.; Smith, K.; Yousif, E.: Synthesis of new thiophene derivatives and their use as photostabilizers for rigid poly(vinyl chloride). Int. J. Polym. Sci. (2015). doi:10.1155/2015/510390 Google Scholar
  25. 25.
    Smith, K.; Al-Zuhairi, A.J.; El-Hiti, G.A.; Alshammari, M.B.: Comparison of cyclic and polymeric disulfides as catalysts for the regioselective chlorination of phenols. J. Sulfur Chem. 36, 74–85 (2015)CrossRefGoogle Scholar
  26. 26.
    Smith, K.; Balakit, A.A.; El-Hiti, G.A.: Poly(propylene sulfide)-borane: convenient and versatile reagent for organic synthesis. Tetrahedron 68, 7834–7839 (2012)CrossRefGoogle Scholar
  27. 27.
    Smith, K.; Balakit, A.A.; Pardasani, R.T.; El-Hiti, G.A.: New polymeric sulfide-borane complexes: convenient hydroborating and reducing reagents. J. Sulfur Chem. 32, 287–295 (2015)CrossRefGoogle Scholar
  28. 28.
    Altaee, N.; El-Hiti, G.A.; Fahdil, A.; Sudesh, K.; Yousif, E.: Biodegradation of different formulations of polyhydroxybutyrate films in soil. (2016). doi:10.1186/s40064-016-2480-2
  29. 29.
    Mohammed, R.F.; Yousif, E.A.: Photochemical study of PVC films in presence of 2-[4-(2-methylpropyl)phenyl]propanoate complexes. Arab J. Phys. Chem. 2, 67–78 (2015)Google Scholar
  30. 30.
    Yousif, E.; Rentschler, E.: Synthesis and characterization of some metal ions with [5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]thioacetic acid. J. Al-Nahrain Univ. 13, 86–92 (2010)Google Scholar
  31. 31.
    Boghaei, D.M.; Gharagozlou, M.: Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates. Spectrochim. Acta A 67, 944–949 (2007)CrossRefGoogle Scholar
  32. 32.
    Joseyphus, R.S.; Nair, M.S.: Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine as Schiff base ligand. Arab. J. Chem. 3, 195–204 (2010)CrossRefGoogle Scholar
  33. 33.
    Shneshil, M.K.; Redayan, M.A.: Photostabilization of PVC films by using some novel tetra Schiff’s bases derived from1,2,4,5-tetra-[5-amino-1,3,4-thiadiazole-2-yl]benzene. Diyala J. Pure Sci. 7, 34–47 (2011)Google Scholar
  34. 34.
    Rabek, J.; Ranby, B.: Photodegradation, Photooxidation and Photostabilization of Polymers. Wiley, New York (1975)Google Scholar
  35. 35.
    Mark, J.: Physical Properties of Polymers Handbook. Springer, New York (2007)Google Scholar
  36. 36.
    Geuskens, G.: Photodegradation of polymers. In: Compton, R.G., Bamford, C.H., Tipper, C.F.H. (eds.) Comprehensive Chemical Kinetics, vol. 14, pp. 333–424. Elsevier, Amsterdam (1975)Google Scholar
  37. 37.
    Mori, F.; Koyama, M.; Oki, Y.: Studies on photodegradation of poly(vinyl chloride (part I)). Die Angew. Makromol. Chem. 64, 89–99 (1977)CrossRefGoogle Scholar
  38. 38.
    Scott, G.: Polymers and Ecological Problems, vol. 3, pp. 27–35. Plennm Press, New York (1973)CrossRefGoogle Scholar
  39. 39.
    Gugumus, F.: Mechanism of Polymer Degradation and Stabilization. Elsevier, Amsterdam (1990)Google Scholar
  40. 40.
    Shyichuk, A.V.; White, J.R.: Analysis of chain-scission and crosslinking rates on the photooxidation of polystyrene. J. Appl. Polym. Sci. 77, 3015–3023 (2000)CrossRefGoogle Scholar
  41. 41.
    Yousif, E.A.; Aliwi, S.M.; Ameer, A.A.; Ukal, J.R.: Improved photostability of PVC films in the presence of 2-thioacetic acid-5-phenyl-1,3,4-oxadiazole complexes. Turk. J. Chem. 33, 399–410 (2009)Google Scholar
  42. 42.
    Júnior, G.C.; Silva, A.P.S.; Guinesi, L.S.: Synthesis, characterization and electropolymerization of a new polypyrrole iron(II) Schiff-base complex. Polyhedron 23, 1953–1960 (2004)CrossRefGoogle Scholar
  43. 43.
    Kara, F.; Aksoy, E.; Yuksekdagd, Z.; Hasirci, N.; Aksoy, S.: Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr. Polym. 112, 39–47 (2014)CrossRefGoogle Scholar
  44. 44.
    Zheng, X.-G.; Tang, L.-H.; Zhang, N.; Gao, Q.-H.; Zhang, C.-F.; Zhu, Z.-B.: Dehydrochlorination of PVC materials at high temperature. Energy Fuels 17, 896–900 (2003)CrossRefGoogle Scholar
  45. 45.
    Starnes, W.H.; Du, B.; Kim, S.; Zaikov, V.G.; Ge, X.; Culyba, E.K.: Thermal stabilization and plasticization of poly(vinyl chloride) by ester thiols: update and current status. Thermochim. Acta 442, 78–80 (2006)CrossRefGoogle Scholar
  46. 46.
    Folarin, O.M.; Sadiku, E.R.: Thermal stabilizers for poly(vinyl chloride): a review. Int. J. Phys. Sci. 6, 4323–4330 (2011)Google Scholar
  47. 47.
    Yousif, E.; Salih, N.; Salimon, J.: Improvement of the photostabilization of PVC films in the presence of 2\(N\)-salicylidene-5-(substituted)-1,3,4-thiadiazole. J. Appl. Polym. Sci. 120, 2207–2214 (2011)CrossRefGoogle Scholar
  48. 48.
    Pospíšil, J.; Klemchuk, P.P.: Oxidation Inhibition in Organic Materials, pp. 48–49. CRC Press, Boca Raton (1989)Google Scholar
  49. 49.
    Padrón, A.J.C.: Mechanistic aspects of polymer photostabilization. J. Photochem. Photobiol. A: Chem. 49, 1–39 (1989)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceAl-Nahrain UniversityBaghdadIraq
  2. 2.Cornea Research Chair, Department of Optometry, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Polymer Research Unit, College of ScienceAl-Mustansiriyah UniversityBagdadIraq

Personalised recommendations