Arabian Journal for Science and Engineering

, Volume 41, Issue 9, pp 3663–3681 | Cite as

Controller System Design Using the Coefficient Diagram Method

  • João P. CoelhoEmail author
  • Tatiana M. Pinho
  • José Boaventura-Cunha
Research Article - Electrical Engineering


Coefficient diagram method is a controller design technique for linear time-invariant systems. This design procedure occurs into two different domains: an algebraic and a graphical. The former is closely paired to a conventional pole placement method and the latter consists on a diagram whose reading from the plotted curves leads to insights regarding closed-loop control system time response, stability and robustness. The controller structure has two degrees of freedom and the design process leads to both low overshoot closed-loop time response and good robustness performance regarding mismatches between the real system and the design model. This article presents an overview on this design method. In order to make more transparent the presented theoretical concepts, examples in Matlab ®code are provided. The included code illustrates both the algebraic and the graphical nature of the coefficient diagram design method.


Coefficient diagram method Pole placement Controller design Linear time-invariant systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manabe, S.: Coefficient diagram method as applied to the attitude control of controlled-bias-momentum satellite. In: 13th IFAC Symposium on Automatic Control in Aerospace, pp. 322–327 (1994)Google Scholar
  2. 2.
    Manabe, S.: The coefficent diagram method. In: 14th IFAC Symposium on Automatic Control in Aerospace, pp. 199–210 (1998)Google Scholar
  3. 3.
    Manabe, S.: Coefficient diagram method in mimo application: an aerospace case study. In: Proceedings of the 16th IFAC World Congress, pp. 1961–1966 (2005)Google Scholar
  4. 4.
    Ocal, O.; Bir, A.; Tibken, B.: Digital design of coefficient diagram method. In: 2009 American control conference, pp. 2849–2854 (2009)Google Scholar
  5. 5.
    Budiyono, A.; Sudiyanto, T.: An algebraic approach for the mimo control of small scale helicopter. In: Proceedings of ICIUS07, pp. 64–72 (2007)Google Scholar
  6. 6.
    Kongratana, V.; Numsomran, A.; Roengruen, P.; Suksri, T.; Thuengsripan, S.: Smith predictor design by CDM for temperature control system. In: Proceeedings ICCAS07, pp. 1472–1477 (2007)Google Scholar
  7. 7.
    Cahyadi, A.; Isarakorn, D.; Benjanarasuth, T.; Ngamwiwit, J.; Komine, N.: Application of coefficient diagram method for rotational inverted pendulum control. In: Control, Automation, Robotics and Vision Conference, vol. 3, pp. 1769–1773 (2004)Google Scholar
  8. 8.
    Kessler C.: Ein beitrag zur theorie mehrschleifiger regulungen. Regelungst 8, 261–266 (1960)zbMATHGoogle Scholar
  9. 9.
    Lipatov A.V., Sokolov N.: Some sufficient conditions for stability and instability of continous linear stationary systems. Autom. Remote Control 39, 1285–1291 (1979)zbMATHGoogle Scholar
  10. 10.
    Manabe, S.; Kim, Y.: Coefficient diagram method for control system design. (1998). Accessed 3 July 2016
  11. 11.
    Koksal M., Hamamci S.E.: A program for the design of linear time invariant control systems: Cdmcad. Comput. Appl. Eng. Educ. 12(3), 165–174 (2004)CrossRefGoogle Scholar
  12. 12.
    Tavazoei M.S., Haeri M.: Comparison of the existing methods in determination of the characteristic polynomial. World Acad. Sci. Eng. Technol. 6, 720–723 (2007)Google Scholar
  13. 13.
    Giernacki, W.: A comparative analysis of tracking quality for CDM and PID control. In: CONTROLO 2012 (2012)Google Scholar
  14. 14.
    Oppenheim A., Willsky A., Nawab S.: Signals and Systems. Prentice Hall, Upper Saddle River (1997)Google Scholar
  15. 15.
    Hsu L., O R., Damm G.: A globally convergent frequency estimator. IEEE Trans. Autom. Control 44(4), 698–713 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hou M.: Amplitude and frequency estimator of a sinusoid. IEEE Trans. Autom. 50(6), 855–858 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ding Z.: Adaptive estimation and rejection of unknown sinusoidal disturbances in a class of non-minimum-phase nonlinear systems. IEE Proc. Control Theory Appl. 153(4), 379–386 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hurwitz A.: On the conditions under which an equation has only roots with negative real parts. Math. Annelen 46, 273–284 (1895)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Manabe, S.: Sufficient condition for stability and instability by Lipatov and its application to coefficient diagram method. In: 9th Workshop on Astrodynamics and Flight Mechanics, pp. 440–449. ISAS (1999)Google Scholar
  20. 20.
    Coelho, J.P.; Boaventura-Cunha, J.; de Moura Oliveira, P.: Extended stability conditions for CDM controller design. In: 11th Portuguese Conference on Automatic Control CONTROLO 2014 (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  • João P. Coelho
    • 1
    • 2
    Email author
  • Tatiana M. Pinho
    • 2
    • 3
  • José Boaventura-Cunha
    • 2
    • 3
  1. 1.Escola Superior de Tecnologia e GestãoInstituto Politécnico de Bragança, Departamento de EletrotecniaBragançaPortugal
  2. 2.INESC TEC - INESC Technology and SciencePortoPortugal
  3. 3.Escola de Ciências e TecnologiaUniversidade de Trás-os-Montes e Alto Douro, UTADVila RealPortugal

Personalised recommendations