Arabian Journal for Science and Engineering

, Volume 42, Issue 1, pp 85–93 | Cite as

Impact of Silver Nanoparticles on Bacteria Isolated from Raw and Treated Wastewater in Madinah, KSA

  • Kholoud M. Alananbeh
  • Zakaria Al-QudahEmail author
  • Amira El-Adly
  • Wadha J. Al Refaee
Research Article - Biological Sciences


This manuscript investigates the effect of silver nanoparticles of different doses and shapes on different gram reaction stain bacteria found in wastewater and to make a comparison between the chemical and physical analyses for some water samples before and after treatment with AgNPs. Two shapes (rod, cube) and four concentrations of 0, 100, 10 and \({1\,\mu{g/ml}}\) of AgNPs were used on Klebsiella pneumonia, Bacillus cereus and Gardnerella vaginalis. The effect of the interaction between the best AgNPs shape and concentration on tap water inoculated with bacterial species and physical and chemical analyses of water before and after treatment with silver nanoparticles were also investigated. Based on the analysis of variance for growth reduction data for the three bacteria, the models showed significance at \({\alpha = 0.05}\). Generally, rod shape with concentration of \({100\, \mu{g/ml}}\) showed the best reduction results compared to cube-shaped particles with mean values of \({-67.48, -100}\) and −73.354 for G. vaginalis, B. cereus and K. pneumonia, respectively. Treating tap water inoculated with the bacterial species by silver nanoparticles showed no growth for the bacteria after 1 or 3 days. In general, tap water chemical and physical analyses values before and after treating with AgNPs were increased after treating the sample with AgNPs except for the pH where it shifted from 8.3 to 6.65. However, these values are still within the Saudi maximum limit except the values of turbidity. These results are encouraging for scaling up a treatment process using AgNPs.


Silver nanoparticles Bacteria inactivation Wastewater treatment Antibacterial materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Qodah Z., Al-Bsoul A., Assirey E., Al-Shannag M.: Combined ultrasonic irradiation and aerobic biodegradation treatment for olive mills wastewaters. Environ. Eng. Manag. J. 13(8), 2109–2118 (2014)Google Scholar
  2. 2.
    Al-Shannag M., Al-Qodah Z., Alananbeh K., Bouqellah N., Assirey E.: COD reduction of baker’s yeast wastewater using batch electrocoagulation. Environ. Eng. Manag. J. 13, 3153–3160 (2014)Google Scholar
  3. 3.
    City of Guleph. Introduction to Wastewater Treatment, vol. 2, pp. 1–17.
  4. 4.
    Choudhary, A.; Ojha, D.: Process and function of advance wastewater treatment technology for textile based effluent. Int. J. Geol. Earth Environ. Sci. 2, 2277–2081 (2012)Google Scholar
  5. 5.
    United Nations (UN): Wastewater Treatment Technologies—A General Review, vol. 2, pp. 3–119. New York (2003)Google Scholar
  6. 6.
    Cloette T.E., Silva E., Nel L.H.: Removal of waterborne human enteric viruses and coliphages with oxidized coal. Curr. Microbiol. 37, 23–27 (1998)CrossRefGoogle Scholar
  7. 7.
    Kumar V.S., Nagaraja B.M., Shashikala V., Padmasri A.H., Madhavendra S.S., Raju D.B., Rao R.K.S.: Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J. Mol. Catal. 223, 313–319 (2004)CrossRefGoogle Scholar
  8. 8.
    Blake D.M.: Bibliography of work on the photocatalytic removal of hazardous compounds from water and air. Nat. Renew. Energy Lab. 16, 430–22197 (1997)Google Scholar
  9. 9.
    Arnaout, C.L.: Assessing the impacts of silver nanoparticles on the growth, diversity, and function of wastewater bacteria. Ph.D. thesis, Duke University (2012)Google Scholar
  10. 10.
    Ollis D.F., El-Akabi H.: Photocatalytic purification and treatment of water and air. Elsevier Soc 44, 957–961 (1993)Google Scholar
  11. 11.
    Gong, P. Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.: Preparation and antibacterial activity of Fe3O4 Ag nanoparticles. Nanotechnology 18, 604–611 (2007)Google Scholar
  12. 12.
    Neuberger T.B., Schopf H., Hofmann M., Von Rechenberg B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)CrossRefGoogle Scholar
  13. 13.
    Norman, T.J.: Nanoparticles Assemblies and Superstructures. Edited by: Kotov Nicholas Amazon. CRC Press (2006)Google Scholar
  14. 14.
    Parak W.J., Gerion D., Pellegrino T., Zanchet D., Zanchet D., Micheel C., Boudreau R., LeGros M.A., Alarabell C., Alivisatos A.P.: Biological applications of colloidal nano crystals. Nanotechnology 14, 15–27 (2003)CrossRefGoogle Scholar
  15. 15.
    Singh M., Singh S., Prasad S., Gambhir I.S.: Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct. 3, 115–122 (2008)Google Scholar
  16. 16.
    Knoll A.: Integrating nanotechnology into a working storage device. Microelectron. Eng. 83, 1692–1697 (2006)CrossRefGoogle Scholar
  17. 17.
    Wong Y.W.H., Yuen C.W.M., Leung M.Y.S., Ku S.K.A., Lam H.L.I.: Selected applications of nanotechnology in textiles. AUTEX Res. J. 6, 34–40 (2006)Google Scholar
  18. 18.
    Zhuang J.; Gentry R.W.: Environmental application and risks of nanotechnology: a balanced view biotechnology and nanotechnology risk assessment: minding and managing the potential threats around us. In: ACS Symposium Series Chapter, vol. 3, pp. 41–67 (2011)Google Scholar
  19. 19.
    Stensberg, M.C.; Madangopal, R.; Yale, G.; Wei, Q.; Ochoa-Acuña, H.; Wei, A.; Mclamore, E.S.; Rickus, J.; Porterfield, D.M.; Sepúlveda, M.S.: Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 8(8), 833 (2014)Google Scholar
  20. 20.
    Tyagi K.P., Singh R., Vats S., Kumar D., Tyagi S.: Nanomaterials use in wastewater treatment. Int. Conf. Nanotechnol. Chem. Eng. 2, 65–69 (2012)Google Scholar
  21. 21.
    Nowack B.: Pollution prevention treatment using nanotechnology. Environ. Asp. 2, 15 (2008)Google Scholar
  22. 22.
    Tiwari D.K., Behari J., Sen P.: Application of nanoparticles in wastewater treatment. World Appl. Sci. J. 3, 417–433 (2008)Google Scholar
  23. 23.
    Luoma S.N.: Silver nanotechnologies and the environment: old problems or new challenges. J. Appl. Sci. 10, 1723–1731 (2008)Google Scholar
  24. 24.
    Cho K.H., Park J.E., Osaka T., Park S.G.: The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochem. Acta 51, 956–960 (2005)CrossRefGoogle Scholar
  25. 25.
    Percival S.L., Bowler P.G., Russell D.: Bacterial resistance to silver in wound care. J. Hosp. Inf. 60, 1–7 (2005)CrossRefGoogle Scholar
  26. 26.
    Hidalgo E., Dominguez C.: Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol. Lett. 98, 169–179 (1998)CrossRefGoogle Scholar
  27. 27.
    Mosleh Y.I., Almagrabi O.A.: Heavy metal accumulation in some vegetables irrigatedwith treated wastewater. Int. J. Green Herb. Chem. 2, 81–90 (2013)Google Scholar
  28. 28.
    Chary N.S., Kamala C.T., Raj D.S.: Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 69, 513–524 (2008)CrossRefGoogle Scholar
  29. 29.
    Abu-Rizaiza O.S.: Modification of the standards of wastewater reuse in Saudi Arabia. Water Res. 2, 2601–2608 (1999)CrossRefGoogle Scholar
  30. 30.
    Solomon S.D., Bahadory M., Jeyarajasingam A.V., Rutkowsky S.A., Boritz C.: Synthesis and study of silver nanoparticles. J. Chem. Educ. 84(2), 322–325 (2007)CrossRefGoogle Scholar
  31. 31.
    Butkus, M.A.; Labare, M.P.; Starke, J.A.; Moon, K.; Talbot, M.: Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl. Environ. Microbiol. 70(5), 2848–53 (2004)Google Scholar
  32. 32.
    Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H.: Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007)CrossRefGoogle Scholar
  33. 33.
    Amaya R.A., Al-Dossary F., Demmler G.J.: Gardnerella Vaginalis bacteremia in a premature neonate. J. Perinatol. 22, 585–587 (2002)CrossRefGoogle Scholar
  34. 34.
    Ahmadi, F.; Abolghasemi, S.; Parhizgari, N.; Moradpour, F.: Effect of silver nanoparticles on common bacteria in hospital surfaces. Jundishapur J. Mycobiol. 6, 209–14 (2013)Google Scholar
  35. 35.
    Soo-Hwan K., Lee H., Ryu D., Choi S., Lee D.: Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39, 77–85 (2011)Google Scholar
  36. 36.
    Pal S., Tak Y.K., Song J.M.: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the gram-negative bacterium Escherichia coli. Am. Soc. Microbiol. 73, 10–109 (2007)Google Scholar
  37. 37.
    Panacek A., Kolar M., Vecerova R., Prucek R., Soukupova J., Rystof V., Hamal P., Zboril R., Kvitek L.: Antifungal activity of silver nanoparticles against Candida J. Biomater. 30, 6333–6340 (2009)CrossRefGoogle Scholar
  38. 38.
    Choi O., Deng K.K., Kim N.J., Ross L., Surampalli R.Y., Hu Z.Q.: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42(12), 3066–3074 (2008)CrossRefGoogle Scholar
  39. 39.
    Arnaout C.L., Gunsch C.K.: Impacts of silver nanoparticle coating on thenitrification potential of Nitrosomonas europaea. Environ. Sci. Technol. 46(10), 5387–5395 (2012)CrossRefGoogle Scholar
  40. 40.
    Amro, N.A.; Kotra, L.P.; Wadu-Mesthrige, K.; Bulychev, A.; Mobashery, S.; Liu, G.: High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16, 2789–96 (2000)Google Scholar
  41. 41.
    Das, P.; Xenopoulos, M.A.; Williams, C.J.; Hoque, M.E., Metcalfe, C.D.: Effects of silver nanoparticles on bacterial activity in natural waters. Environ. Toxicol. Chem. 31, 122–130 (2012). doi: 10.1021/la035330m
  42. 42.
    Zhang L., Yu J.C., Yip H.Y., Li Q., Kwong K.W., Xu A., Wong P.K.: Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19, 10372–10380 (2003)CrossRefGoogle Scholar
  43. 43.
    Perez, M.A.: The Effects of Silver Nanoparticles on Wastewater Treatment and Escherichia coli Growth. Honors Thesis, Florida State University, Florida, USA (2012)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  • Kholoud M. Alananbeh
    • 1
  • Zakaria Al-Qudah
    • 2
    • 4
    Email author
  • Amira El-Adly
    • 3
  • Wadha J. Al Refaee
    • 3
  1. 1.Department of Plant Protection, Faculty of AgricultureThe University of JordanAmmanJordan
  2. 2.Chemical Engineering DepartmentTaibah UniversityMadinahSaudi Arabia
  3. 3.Biology DepartmentTaibah UniversityMadinahSaudi Arabia
  4. 4.Chemical Engineering DepartmentAl-Balqaa Applied UniversityAmmanJordan

Personalised recommendations