Arabian Journal for Science and Engineering

, Volume 41, Issue 8, pp 3003–3025 | Cite as

Uncertainty-Based QoS Min–Min Algorithm for Heterogeneous Multi-cloud Environment

  • Sanjaya K. Panda
  • Prasanta K. Jana
Research Article - Computer Engineering and Computer Science


With the advances in virtualization technology, cloud has become the most powerful and promising platform for business, academia, public and government organizations. The cloud users do not require to maintain any IT infrastructure such as hardware, software and network resources in their premises. They can rent the services on demand from anywhere in the world just by paying for that service. In cloud computing, task allocation is a well-known problem. Many algorithms have been developed for the same. However, task allocation in a heterogeneous multi-cloud environment is much more challenging due to the dynamic nature of the cloud resources. In this paper, we present an algorithm, called uncertainty-based quality of service (QoS) Min–Min (UQMM) algorithm which considers QoS based on uncertainty parameters in heterogeneous multi-cloud environment. To the best of our knowledge, this is the first paper which deals with the task allocation problem with uncertainty-based QoS in a heterogeneous multi-cloud systems. We perform extensive simulations on the proposed algorithm using benchmark as well as synthetic datasets and measure performance in terms of various metrics. The results are compared with the popular cloud min–min scheduling, cloud min–max normalization and smoothing-based task scheduling algorithm to show the effectiveness of the proposed algorithm. Moreover, we evaluate the results using two statistical tests, namely t test and ANOVA.


Cloud computing Multi-cloud environment Task scheduling Quality of service Uncertainty Min–min 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furht, B.; Escalante, A.(eds): Handbook of Cloud Computing. Springer, ISBN 978-1-4419-6523-3 (2010)Google Scholar
  2. 2.
    Amazon Web Services. Accessed 11 April 2015
  3. 3.
    IBM Cloud. Accessed 11 April 2015
  4. 4.
    Microsoft Azure. Accessed 15 April 2015
  5. 5.
    Cloud Consulting. Accessed 29 April 2015
  6. 6.
    Amazon Web Services (AWS). Accessed 30 April 2015
  7. 7.
    Montage: An Astronomical Image Mosaic Engine. Accessed 30 April 2015
  8. 8.
    Southern California Earthquake Center. Accessed 30 April 2015
  9. 9.
    Illumina. Accessed 30 April 2015
  10. 10.
    Brown D.A., Brady P.R., Dietz A., Cao J., Johnson B., McNabb J.: A Case Study on the Use of Workflow Technologies for Scientific Analysis: Gravitational Wave Data Analysis. Workflows for E-Science, pp. 39–59. Springer, Berlin (2007)Google Scholar
  11. 11.
    Livny J., Teonadi H., Livny M., Waldor M.K.: High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS One 3(9), 1–12 (2008)CrossRefGoogle Scholar
  12. 12.
    Ullman J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Braun T.D., Siegel H.J., Beck N., Boloni L.L., Maheswaran M., Reuther A.I., Robertson J.P., Theys M.D., Yao B., Hensgen D., Freund R.F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Maheswaran M., Ali S., Siegel H.J., Hensgen D., Freund R.F.: Dynamic mapping of a class of independent tasks onto heterogeneous computing systems. J. Parallel Distrib. Comput. 59, 107–131 (1999)CrossRefGoogle Scholar
  15. 15.
    Ibarra O.H., Kim C.E.: Heuristic algorithms for scheduling independent tasks on nonidentical processors. J. Assoc. Comput. Mach. 24(2), 280–289 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Armstrong, R.; Hensgen, D.; Kidd, T.: The Relative Performance of Various Mapping Algorithms is Independent of Sizable Variances in Run-time Predictions. In: 7th IEEE Heterogeneous Computing Workshop, pp. 79–87 (1998)Google Scholar
  17. 17.
    Freund, R.F.; Gherrity, M.; Ambrosius, S.; Campbell, M.; Halderman, M.; Hensgen, D.; Keith, E.; Kidd, T.; Kussow, M.; Lima, J.D.; Mirabile, F.; Moore, L.; Rust, B.; Siegel, H.J.: Scheduling Resources in Multi-User, Heterogeneous, Computing Environments with SmartNet. In: 7th IEEE Heterogeneous Computing Workshop, pp. 184–199 (1998)Google Scholar
  18. 18.
    Topcuoglu H., Hariri S., Wu M.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)CrossRefGoogle Scholar
  19. 19.
    Bajaj R., Agrawal D.P.: Improving scheduling of tasks in a heterogeneous environment. IEEE Trans. Parallel Distrib. Syst. 15(2), 107–118 (2004)CrossRefGoogle Scholar
  20. 20.
    Li J., Qiu M., Ming Z., Quan G., Qin X., Gu Z.: Online optimization for scheduling preemptable tasks on IaaS cloud system. J. Parallel Distrib. Comput. 72, 666–677 (2012)CrossRefGoogle Scholar
  21. 21.
    Wen, H.; Hai-ying, Z.; Chuang, L.; Yang, Y.: Effective Load Balancing for Cloud-based Multimedia System. In: International Conference on Electronic and Mechanical Engineering and Information Technology, pp. 165–168 (2011)Google Scholar
  22. 22.
    Wang, S.; Yan, K.; Liao, W.; Wang, S.: Towards a Load Balancing in a Three-level Cloud Computing Network. In: 3rd IEEE International Conference on Computer Science and Information Technology, Vol. 1, pp. 108–113 (2010)Google Scholar
  23. 23.
    Ergu D., Kou G., Peng Y., Shi Y., Shi Y.: The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J. Supercomput. 64, 835–848 (2013)CrossRefGoogle Scholar
  24. 24.
    Rai, A.; Bhagwan, R., Guha, S.: Generalized Resource Allocation for the Cloud. In: 3rd ACM Symposium on Cloud Computing (2012)Google Scholar
  25. 25.
    Bozdag D., Ozguner F., Catalyurek U.: Compaction of schedules and a two-stage approach for duplication-based DAG scheduling. IEEE Trans. Parallel Distrib. Syst. 20(6), 857–871 (2009)CrossRefGoogle Scholar
  26. 26.
    Xu Y., Hu H., Yihe S.: Data dependence graph directed scheduling for clustered VLIW architectures. IEEE Tsinghua Sci. Technol. 15(3), 299–306 (2010)CrossRefGoogle Scholar
  27. 27.
    Bittencourt L.F., Madeira E.R.M., Fonseca N.L.S.D.: Scheduling in hybrid clouds. IEEE Commun. Mag. 50(9), 42–47 (2012)CrossRefGoogle Scholar
  28. 28.
    Xhafa F., Carretero J., Barolli L., Durresi A.: Immediate mode scheduling in grid systems. Int. J. Web Grid Serv. 3(2), 219–236 (2007)CrossRefGoogle Scholar
  29. 29.
    Xhafa F., Barolli L., Durresi A.: Batch mode scheduling in grid systems. Int. J. Web Grid Serv. 3(1), 19–37 (2007)CrossRefGoogle Scholar
  30. 30.
    Panda S.K., Jana P.K.: Efficient task scheduling algorithms for heterogeneous multi-cloud environment. J. Supercomput. 71(4), 1505–1533 (2015)CrossRefGoogle Scholar
  31. 31.
    Panda, S.K.; Nag, S.; Jana, P.K.: A smoothing based task scheduling algorithm for heterogeneous multi-cloud environment. In: Third IEEE International Conference on Parallel, Distributed and Grid Computing, IEEE, pp. 62–67 (2014)Google Scholar
  32. 32.
    Panda, S.K.; Jana, P.K.: An Efficient Resource Allocation Algorithm for IaaS Cloud. In: 11th International Conference on Distributed Computing and Internet Technology. Lecture Notes in Computer Science, Springer, vol. 8956, pp. 351–355 (2015)Google Scholar
  33. 33.
  34. 34.
    He X.S., Sun X.H., Von Laszewski G.: QoS guided min-min heuristic for grid task scheduling. J. Comput. Sci. Technol. 18(4), 442–451 (2003)CrossRefzbMATHGoogle Scholar
  35. 35.
    Decai H., Yuan Y., Li-jun Z., Ke-qin Z.: Research on tasks scheduling algorithms for dynamic and uncertain computing grid based on a+bi connection number of SPA. J. Softw. 4(10), 1102–1109 (2009)Google Scholar
  36. 36.
  37. 37.
    Calyam P., Rajagopalan S., Seetharam S., Selvadhurai A., Salah K., Ramnath R.: VDC-analyst: design and verification of virtual desktop cloud resource allocations. Comput. Netw. 68, 110–122 (2014)CrossRefGoogle Scholar
  38. 38.
    Al-Haidari, F.; Sqalli, M.; Salah, K.: Impact of CPU Utilization Thresholds and Scaling Size on Autoscaling Cloud Resources. In: 5th IEEE International Conference on Cloud Computing Technology and Science, vol. 2, pp. 256–261 (2013)Google Scholar
  39. 39.
    Salah K., Calero J.M.A., Bernabe J.B., Perez J.M.M., Zeadally S.: Analyzing the security of windows 7 and Linux for cloud computing. Comput. Secur. 34, 113–122 (2013)CrossRefGoogle Scholar
  40. 40.
    Salah K., Calero J.M.A., Zeadally S., Al-Mulla S., Alzaabi M.: Using cloud computing to implement a security overlay network. IEEE Secur. Priv. 11(1), 44–53 (2013)Google Scholar
  41. 41.
    Al-Qawasmeh A.M., Maciejewski A.A., Wang H., Smith J., Siegel H.J., Potter J.: Statistical measures for quantifying task and machine heterogeneities. J. Supercomput. 57, 34–50 (2011)CrossRefGoogle Scholar
  42. 42.
    Miriam D.D.H., Easwarakumar K.S.: SPA-based task scheduling for hypercubic P2P grid systems. Int. J. Commun. Netw. Distrib. Syst. 9, 117–139 (2012)CrossRefGoogle Scholar
  43. 43.
    Foster, I.; Zhao, Y.; Raicu, I.; Lu, S.: Cloud Computing and Grid Computing 360-Degree Compared. In: Workshop on Grid Computing, Environment, pp 1–10 (2008)Google Scholar
  44. 44.
    Ardagna D., Casale G., Ciavotta M., Perez J.F., Wang W.: Quality-of-service in cloud computing: modeling techniques and their applications. J. Internet Serv. Appl. 5, 1–17 (2014)CrossRefGoogle Scholar
  45. 45.
    Abdelmaboud A., Jawawi D.N.A., Ghani I., Elsafi A., Kitchenham B.: Quality of service approaches in cloud computing: a systematic mapping study. J. Syst. Softw. 101, 159–179 (2015)CrossRefGoogle Scholar
  46. 46.
    Chen J., Abedin F., Chao K., Godwin N., Li Y., Tsai C.: A hybrid model for cloud providers and consumers to agree on QoS of cloud services. Future Gener. Comput. Syst. 50, 38–48 (2015)CrossRefGoogle Scholar
  47. 47.
    Javadi B., Abawajy J., Buyya R.: Failure-aware resource provisioning for hybrid cloud infrastructure. J. Parallel Distrib. Comput. 72, 1318–1331 (2012)CrossRefGoogle Scholar
  48. 48.
    Muhuri P.K., Shukla K.K.: Real-time task scheduling with fuzzy uncertainty in processing times and deadlines. Appl. Soft Comput. 8, 1–13 (2008)CrossRefGoogle Scholar
  49. 49.
    Avetisyan, A.I.; Campbell, R.; Gupta, I.; Heath, M.T.; Ko, S.Y.; Ganger, G.R.; Kozuch, M.A.; O’Hallaron, D.; Kunze, M.; Kwan, T.T.; Lai, K.; Lyons, M.; Milojicic, D.S.; Lee, H.Y.; Soh, Y.C.; Ming, N.K.; Luke, J.; Namgoong, H.: Open Cirrus: A Global Cloud Computing Testbed. In: IEEE Computer Society, pp. 35–43 (2010)Google Scholar
  50. 50.
    Greenberg A., Hamilton J., Maltz D.A., Patel P.: The cost of cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2009)CrossRefGoogle Scholar
  51. 51.
    Ali, S.; Siegel, H.J.; Maheswaran, M.; Hensgen, D.; Ali, S.: Task Execution Time Modeling for Heterogeneous Computing Systems. In: 9th Heterogeneous Computing Workshop, IEEE Computer Society, pp. 185-200 (2000)Google Scholar
  52. 52.
    Ott R.L., Longnecker M.: An Introduction to Statistical Methods and Data Analysis, 6th Edition. Duxbury Press, Boston (2010)Google Scholar
  53. 53.
    Muller K.E., Fetterman B.A.: Regression and ANOVA: An Integrated Approach Using SAS Software. SAS Publisher, Cary (2002)zbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering and Information TechnologyVeer Surendra Sai University of TechnologyBurlaIndia
  2. 2.Department of Computer Science and EngineeringIndian School of MinesDhanbadIndia

Personalised recommendations