Arabian Journal for Science and Engineering

, Volume 41, Issue 8, pp 2957–2973 | Cite as

Optimal Synthesis of Linear Antenna Arrays Using Modified Spider Monkey Optimization

Research Article - Computer Engineering and Computer Science

Abstract

This paper presents a novel optimization technique named as modified spider monkey optimization (MSMO) for the synthesis of linear antenna array (LAA). The proposed method is inspired from a recently developed spider monkey optimization (SMO) swarm intelligent technique. The competitiveness of SMO has been already proved using numerical optimization functions. To improve the performance of SMO, a MSMO algorithm based on dual-search strategy is proposed in this paper. This approach generates a new solution using a search equation selected randomly from a candidate pool consisting of two search strategies. The performance of the proposed method is tested by applying it to find the optimal solutions for standard benchmark functions. Further, the capability and effectiveness is also proved by using it for practical optimization problem, i.e., synthesis of LAA for three different cases. Experimental results show that MSMO outperforms other popular algorithms like particle swarm optimization, cuckoo search, firefly algorithm, biogeography based optimization, differential evolution, tabu search and Taguchi method in terms of reduced side lobe level and faster convergence speed.

Keywords

Swarm intelligence Spider monkey optimization MSMO Side lobe level Antennas Linear antenna arrays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rerences

  1. 1.
    Dorigo, M.; Birattari, M.: Ant Colony Optimization. Encyclopedia of Machine Learning, pp. 36–39. Springer, USA (2010)Google Scholar
  2. 2.
    Dorigo, M.; Di Caro, G.: Ant Colony optimization: a new meta-heuristic. In: Proceedings of Congress on Evolutionary Computation, Washington, DC, USA (1999)Google Scholar
  3. 3.
    Kennedy, J.; Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    Passino K.M.: Bacterial foraging optimization. Int. J. Swarm Intell. Res. (IJSIR) 1(1), 1–16 (2010)CrossRefGoogle Scholar
  5. 5.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Erciyes University, Eng. Faculty, Comput. Eng. Dept., Tech. Rep. TR-06 (2005)Google Scholar
  6. 6.
    Bansal J., Sharma H., Jadon S, Clerc M.: Spider monkey optimization algorithm for numerical optimization. Memet. Comput. 6(1), 31–47 (2014)CrossRefGoogle Scholar
  7. 7.
    Porto V.: Evolutionary Programming, VII. Springer, Berlin (1998)CrossRefGoogle Scholar
  8. 8.
    Mezura-Montes, E.; Velázquez-Reyes, J.; Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 485–492. ACM Press, New York (2006)Google Scholar
  9. 9.
    Lampinen, J.; Zelinka, I.: On stagnation of the differential evolution algorithm. In: Proceedings of MENDEL, Citeseer, pp. 76–83 (2001)Google Scholar
  10. 10.
    Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Evolutionary Programming, VII, pp. 591–600. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Angeline P., Karaboga D., Akay B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 14(1), 108–132 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Gao W.-F., Liu S.-Y.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012)CrossRefMATHGoogle Scholar
  13. 13.
    Simon D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)CrossRefGoogle Scholar
  14. 14.
    Hansen N.: The CMA evolution strategy: a comparing review. In: Lozano J.A., Larrañaga P., Inza I.; Bengoetxea E. (eds.) Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms, pp. 75-102. Springer, Berlin (2006)CrossRefGoogle Scholar
  15. 15.
    Zhang, J.; Sanderson, A.C.: JADE: Self-adaptive differential evolution with fast and reliable convergence performance. In: Proceedings of IEEE Congress in Evolutionary Computation, Singapore, pp. 2251–2258 (2007)Google Scholar
  16. 16.
    Qin, A.K.; Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791 (2005)Google Scholar
  17. 17.
    Cen, L.; Ser, W.; Yu, Z.L.; Rahardja, S.: An improved genetic algorithm for aperiodic array synthesis. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, pp. 2465–2468 (2008)Google Scholar
  18. 18.
    Dib N., Goudos S., Muhsen H.: Application of taguchi’s optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays. PIER 102, 159–180 (2010)CrossRefGoogle Scholar
  19. 19.
    Lin C., Qing A., Feng Q.: Synthesis of unequally spaced antenna arrays by using differential evolution. IEEE Trans. Antennas Propag. 58(8), 2553–2561 (2010)CrossRefGoogle Scholar
  20. 20.
    Khodier M.: Optimisation of antenna arrays using the cuckoo search algorithm. IET Microwaves Antennas Propag. 7(6), 458–464 (2013)CrossRefGoogle Scholar
  21. 21.
    Zaman M., Abdul Matin M.: Nonuniformly spaced linear antenna array design using firefly algorithm. Int. J. Microwave Sci. Technol. 2012, 1–8 (2012)CrossRefGoogle Scholar
  22. 22.
    Merad L., Bendimerad F., Meriah S.: Design of linear antenna arrays for side lobe reduction using the tabu search method. Int. Arab. J. Inf. Technol. 5(3), 219–222 (2008)Google Scholar
  23. 23.
    Jin N., Rahmat-Samii Y.: Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag. 55(3), 556–567 (2007)CrossRefGoogle Scholar
  24. 24.
    Khodier M., Al-Aqeel M.: Linear and circular array optimization: a study using particle swarm intelligence. PIER B 15, 347–373 (2009)CrossRefGoogle Scholar
  25. 25.
    Khodier M.M., Christodoulou C.G.: Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propag. 53(8), 2674–2679 (2005)CrossRefGoogle Scholar
  26. 26.
    Liu D., Feng Q., Wang W.-B., Yu X.: Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization. PIER 118, 205–221 (2011)CrossRefGoogle Scholar
  27. 27.
    Goudos S.K., Moysiadou V., Samaras T., Siakavara K., Sahalos J.N.: Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control. IEEE Antennas Wirel. Propag. Lett. 9, 125–129 (2010)CrossRefGoogle Scholar
  28. 28.
    Wang W., Feng Q., Liu D.: Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays. PIER 115, 173–189 (2011)CrossRefGoogle Scholar
  29. 29.
    Sharaqa A., Dib N.: Design of linear and elliptical antenna arrays using biogeography based optimization. Arab. J. Sci. Eng. 39(4), 2929–2939 (2013)CrossRefGoogle Scholar
  30. 30.
    Singh U., Kamal T.S.: Optimal synthesis of thinned arrays using biogeography based optimization. PIERM 24, 141–155 (2012)Google Scholar
  31. 31.
    Singh U., Kumar H., Kamal T.S.: Linear array synthesis using biogeography based optimization. PIER M 11, 25–36 (2010)CrossRefGoogle Scholar
  32. 32.
    Singh U., Rattan M.: Design of linear and circular antenna arrays using cuckoo optimization algorithm. PIER C 46, 1–11 (2014)CrossRefGoogle Scholar
  33. 33.
    Symington M.M.F.: Fission–fusion social organization. Ateles Pan. Int. J. Primatol. 11(1), 47–61 (1990)CrossRefGoogle Scholar
  34. 34.
    Chapman C., Lefebvre L.: Manipulating foraging group size: spider monkey food calls at fruiting trees. Anim. Behav. 39(5), 891–896 (1990)CrossRefGoogle Scholar
  35. 35.
    Bonabeau E. et al.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)MATHGoogle Scholar
  36. 36.
    Yurtkuran, A.; Emal, E.: A modified artificial bee colony algorithm for p-center Problems. The Sci. World J. 2014, Article ID 824196, 9 pp. (2014). doi: 10.1155/2014/824196
  37. 37.
    Jamil M., Yang X.-S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)MATHGoogle Scholar
  38. 38.
    Liang, J.J.; Qu, B.Y.; Sugathan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Technical Report, Nanyang Technological University, Singapore (2013)Google Scholar
  39. 39.
    Derrac J., García S., Molina D., Herrera F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 1, 3–18 (2011)CrossRefGoogle Scholar
  40. 40.
    Balanis C.: Antenna Theory-Analysis and Design. Wiley, London (1997)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  1. 1.Department of ECEThapar UniversityPatialaIndia
  2. 2.Department of ECEChandigarh UniversityMohaliIndia

Personalised recommendations