Advertisement

Arabian Journal for Science and Engineering

, Volume 41, Issue 7, pp 2417–2427 | Cite as

Effects of Potassium, Magnesium, Zinc, and Manganese Addition on the Anaerobic Digestion of De-oiled Grease Trap Waste

  • Li-Jie WuEmail author
  • Takuro Kobayashi
  • Hidetoshi Kuramochi
  • Yu-You Li
  • Kai-Qin Xu
Research Article - Chemical Engineering

Abstract

Dosage of nutrients for anaerobic digestion is essential to maintain their treatment performance. Kitchen waste generally contains low concentrations of nutrients, especially metals. However, for de-oiled grease trap waste (GTW), such a kitchen waste, little data are available in terms of nutrient supplementation to enhance anaerobic digestion. In order to determine the effects of different concentrations of metals on anaerobic digestion of de-oiled GTW and the optimal metal dosages, a step-wise batch experiment for four metals, potassium (K), magnesium (Mg), zinc (Zn), and manganese (Mn), with a blank test as control, was conducted to gradually lower the concentrations of metals. The supplementation of individual K, Mg, Zn, and Mn did have effects on enhancing the process to different extents. The appropriate concentrations of investigated metals for accelerating anaerobic digestion of de-oiled GTW were as follows: K 720.2mg/g COD, Mg 47.3mg/g COD, Zn 1.1mg/g COD, and Mn 11.6mg/g COD, respectively. The requirements of four metals obtained in the experiment agreed with the results of theoretical calculations.

Keywords

Grease trap waste Trace element Nutrients Metal Anaerobic digestion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant M.P.: Microbial methane production: theoretical aspects. J. Anim. Sci. 48(1), 193–201 (1979)Google Scholar
  2. 2.
    Takashima M., Speece R.E., Parkin G.F.: Mineral requirements for methane fermentation. Crit. Rev. Environ. Sci. Technol. 19(5), 465–479 (1990)Google Scholar
  3. 3.
    Frosteil B.O.R.: Process control in anaerobic wastewater treatment. Water Sci. Technol. 17(1), 173–189 (1985)Google Scholar
  4. 4.
    Liu X.L., Wang J., Song Y.H., Zeng P.: Response surface optimization of trace element requirement for the production of volatile fatty acids from excess sludge. Adv. Mater. Res. 878, 663–669 (2014)CrossRefGoogle Scholar
  5. 5.
    Oleszkiewicz J.A., Sharma V.K.: Stimulation and inhibition of anaerobic processes by heavy metals: a review. Biol. Wastes 31(1), 45–67 (1990)CrossRefGoogle Scholar
  6. 6.
    Scherer P., Lippert H., Wolff G.: Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol. Trace Elem. Res. 5(3), 149–163 (1983)CrossRefGoogle Scholar
  7. 7.
    Goodwin J., Wase D., Forster C.F.: Effects of nutrient limitation on the anaerobic upflow sludge blanket reactor. Enzyme Microb. Technol. 12(11), 877–884 (1990)CrossRefGoogle Scholar
  8. 8.
    Zhang Y., Zhang Z., Suzuki K., Maekawa T.: Uptake and mass balance of trace metals for methane producing bacteria. Biomass Bioenergy 25(4), 427–433 (2003)CrossRefGoogle Scholar
  9. 9.
    Jiang, B.: The Effect of Trace Elements on the Metabolism of Methanogenic Consortia. Wageningen University, (2006)Google Scholar
  10. 10.
    Demirel B., Scherer P.: Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35(3), 992–998 (2011)CrossRefGoogle Scholar
  11. 11.
    Zandvoort M.H., Osuna M.B., Geerts R., Lettinga G., Lens P.: Effect of nickel deprivation on methanol degradation in a methanogenic granular sludge bioreactor. J. Ind. Microbiol. Biotechnol. 29(5), 268–274 (2002)CrossRefGoogle Scholar
  12. 12.
    Qiang H., Lang D., Li Y.: High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements. Bioresour. Technol. 103(1), 21–27 (2012)CrossRefGoogle Scholar
  13. 13.
    Kobayashi T., Kuramochi H., Maeda K., Tsuji T., Xu K.: Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue. Bioresour. Technol. 169, 134–142 (2014)CrossRefGoogle Scholar
  14. 14.
    Parkin G.F., Owen W.F.: Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Eng. 112(5), 867–920 (1986)CrossRefGoogle Scholar
  15. 15.
    APHA: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC (2012)Google Scholar
  16. 16.
    Krongthamchat K., Riffat R., Dararat S.: Effect of trace metals on halophilic and mixed cultures in anaerobic treatment. Int. J. Environ. Sci. Technol. 3(2), 103–112 (2006)CrossRefGoogle Scholar
  17. 17.
    Takashima M., Speece R.E.: Mineral nutrient requirements for high-rate methane fermentation of acetate at low SRT. Res. J. Water Pollut. Control Fed. 61(11/12), 1645–1650 (1989)Google Scholar
  18. 18.
    Facchin V., Cavinato C., Pavan P., Bolzonella D.: Batch and continuous mesophilic anaerobic digestion of food waste: effect of trace elements supplementation. Chem. Eng. Trans. 32, 457–462 (2013)Google Scholar
  19. 19.
    Rinzema A.: Anaerobic Treatment of Wastewater with High Concentration of Lipids or Sulfate. Wageningen Agricultural University, Wageningen (1988)Google Scholar
  20. 20.
    Cheng J.: Biomass to Renewable Energy Processes. CRC Press Inc., London (2010)Google Scholar
  21. 21.
    Chen Y., Cheng J.J.: Effect of potassium inhibition on the thermophilic anaerobic digestion of swine waste. Water Environ. Res. 79(6), 667–674 (2007)CrossRefGoogle Scholar
  22. 22.
    Kayhanian M., Rich D.: Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass Bioenergy 8(6), 433–444 (1995)CrossRefGoogle Scholar
  23. 23.
    Bashir B.H., Matin A.: Sodium toxicity control by the use of magnesium in an anaerobic reactor. J. Appl. Sci. Environ. Manag. 8(1), 17–21 (2004)Google Scholar
  24. 24.
    Todar K.: Bacteria and archaea and the cycles of elements in the environment. http://textbookofbacteriology.net/environment.html. (2015-1-7)
  25. 25.
    Vintiloiu A., Boxriker M., Lemmer A., Oechsner H., Jungbluth T., Mathies E., Ramhold D.: Effect of ethylenediaminetetraacetic acid (EDTA) on the bioavailability of trace elements during anaerobic digestion. Chem. Eng. J. 223(1), 436–441 (2013)CrossRefGoogle Scholar
  26. 26.
    Banks C.J., Zhang Y., Jiang Y., Heaven S.: Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour. Technol. 104, 127–135 (2012)CrossRefGoogle Scholar
  27. 27.
    Tchobanoglous G., Burton F.L.: Wastewater Engineering: Treatment Disposal Reuse. McGraw-Hill, New York (1991)Google Scholar
  28. 28.
    Fathepure B.Z.: Factors affecting the methanogenic activity of Methanothrix soehngenii VNBF. Appl. Environ. Microbiol. 53(12), 2978–2982 (1987)Google Scholar
  29. 29.
    Gustavsson J., Svensson B., Karlsson A.: The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors. Water Sci. Technol. 64(2), 320–325 (2011)CrossRefGoogle Scholar
  30. 30.
    Murray W.D., Van Den Berg L.: Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl. Environm. Microbiol. 42(3), 502–505 (1981)Google Scholar
  31. 31.
    Schönheit P., Moll J., Thauer R.K.: Nickel, cobalt, and molybdenum requirement for growth of methanobacterium thermoautotrophicum. Arch. Microbiol. 123(1), 105–107 (1979)CrossRefGoogle Scholar
  32. 32.
    Espinosa A., Rosas L., Ilangovan K., Noyola A.: Effect of trace metals on the anaerobic degradation of volatile fatty acids in molasses stillage. Water Sci. Technol. 32(12), 121–129 (1995)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2015

Authors and Affiliations

  • Li-Jie Wu
    • 1
    Email author
  • Takuro Kobayashi
    • 2
  • Hidetoshi Kuramochi
    • 2
  • Yu-You Li
    • 1
    • 3
  • Kai-Qin Xu
    • 2
    • 4
  1. 1.Department of Civil and Environmental Engineering, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Center of Material Cycles and Waste Management ResearchNational Institute for Environmental StudiesTsukubaJapan
  3. 3.Department of Frontier Science for Advanced Environment, Graduate School of Environmental StudiesTohoku UniversitySendaiJapan
  4. 4.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations