Arabian Journal for Science and Engineering

, Volume 41, Issue 6, pp 2077–2086 | Cite as

Biodegradation of Petrochemical Hydrocarbons Using an Efficient Bacterial Consortium: A2457

  • Inam Ali Larik
  • Muneer Ahmed Qazi
  • Asif Raza Kanhar
  • Shahida Mangi
  • Safia Ahmed
  • Muhammad Rahib Jamali
  • Nisar Ahmed KanharEmail author
Research Article - Biological Sciences


Petrochemical hydrocarbons are considered to be the most significant environmental pollutants and need to be removed. In present study, the biodegradation of used engine oil and diesel oil was achieved under shake flask conditions using an efficient bacterial consortium A2457: comprising bacterial strains of Stenotrophomonas maltophilia, Bacillus cereus and Bacillus pumilus. The strains were isolated and screened by enrichment technique. The bacterial strains were identified on the basis of 16S rRNA gene sequence homology. The percent removal and biodegradation of the petrochemicals was evaluated through UV–Vis spectrophotometer and FTIR spectrometry. The bacterial consortium resulted in significant degradation of diesel oil (94.13 %) and used engine oil (99.77 %) under experimental conditions. FTIR spectra of the hydrocarbons, before and after biodegradation experiments, also revealed significant changes in the characteristic peaks in the wavenumber range of 4000–600 cm−1. The consortium displayed significant biosurfactant production and lipase activity during 28 days of incubation and reduced the surface tension of culture medium to 27.95 ± 0.3 mN m−1. The petrochemical hydrocarbon degradation by the bacterial consortium: A2457 of present study could be attributed with the production of biosurfactants and lipases to utilize diesel oil and used engine oil as sole source of carbon and energy.


Petrochemicals Biodegradation Consortium Lipase enzyme Biosurfactants Hydrocarbon contamination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2015_1851_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)


  1. 1.
    Lee, S.: Ethanol from corn. In: Lee, S.; Speight, J.G.; Loyalka, S.K. (eds.) Handbook of Alternative Fuel Technologies. CRC Press, Taylor & Francis Group, Boca Raton, FL (2014)Google Scholar
  2. 2.
    Soccol C.R., Faraco V., Karp S., Vandenberghe L.P.S., Thomaz-Soccol V., Woiciechowski A., Pandey A.: Lignocellulosic bioethanol: current status and future perspectives. In: Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E. (eds.) Biofuels: Alternative Feedstocks and Conversion Processes, pp. 101–122. Academic Press, Elsevier Science, San Diego (2011)CrossRefGoogle Scholar
  3. 3.
    Mandri T., Lin J.: Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr. J. Biotechnol. 6(1), 023–027 (2007)Google Scholar
  4. 4.
    Husaini A., Roslan H., Hii K., Ang C.: Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J. Microbiol. Biotechnol. 24(12), 2789–2797 (2008)CrossRefGoogle Scholar
  5. 5.
    Blodgett W.C. Jr: Water-soluble mutagen production during the bioremediation of oil-contaminated soil. Fla. Sci. 60(1), 28–36 (1997)Google Scholar
  6. 6.
    Rubio-Clemente A., Torres-Palma R.A., Peñuela G.A.: Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci. Total Environ. 478, 201–225 (2014)CrossRefGoogle Scholar
  7. 7.
    Cerniglia C.E., Gibson D.T., Van Baalen C.: Oxidation of naphthalene by cyanobacteria and microalgae. J. Gen. Microbiol. 116(2), 495–500 (1980)Google Scholar
  8. 8.
    Lee L.S., Hagwall M., Delfino J.J., Rao P.S.C.: Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water. Environ. Sci. Technol. 26(11), 2104–2110 (1992)CrossRefGoogle Scholar
  9. 9.
    Boonchan S., Britz M.L., Stanley G.A.: Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66(3), 1007–1019 (2000)CrossRefGoogle Scholar
  10. 10.
    Mishra S., Jyot J., Kuhad R.C., Lal B.: Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl. Environ. Microbiol. 67(4), 1675–1681 (2001)CrossRefGoogle Scholar
  11. 11.
    Hadibarata, T.; Tachibana, S.: Microbial degradation of crude oil by fungi pre-grown on wood meal. In: Interdisciplinary Studies on Environmental Chemistry—Environmental Research in Asia, Terrapub, Tokyo, pp. 317–322 (2009)Google Scholar
  12. 12.
    Lloyd A.C., Cackette T.A.: Diesel engines: environmental impact and control. J. Air Waste Manag. Assoc. 51(6), 809–847 (2001)CrossRefGoogle Scholar
  13. 13.
    Medina-Bellver J.I., Marín P., Delgado A., Rodríguez-Sánchez A., Reyes E., Ramos J.L., Marques S.: Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ. Microbiol. 7(6), 773–779 (2005)CrossRefGoogle Scholar
  14. 14.
    Kostka, J.E.; Teske, A.P.; Joye, S.B.; Head, I.M.: The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Front. Microbiol. 5, 471 (2014). doi: 10.3389/fmicb.2014.00471
  15. 15.
    Adoki A., Odokuma L.: Bioluminescent hydrocarbonclastic bacteria of the Niger Delta. Afr. J. Biotechnol. 6(4), 393–399 (2007)Google Scholar
  16. 16.
    Johnstone N., Haščič I., Popp D.: Renewable energy policies and technological innovation: evidence based on patent counts. Environ. Resour. Econ. 45(1), 133–155 (2010)CrossRefGoogle Scholar
  17. 17.
    Foght J., Westlake D.: Effect of the dispersant Corexit 9527 on the microbial degradation of Prudhoe Bay oil. Can. J. Microbiol. 28(1), 117–122 (1982)CrossRefGoogle Scholar
  18. 18.
    Ziagova M., Koukkou A., Liakopoulou-Kyriakides M.: Optimization of cultural conditions of Arthrobacter sp. Sphe 3 for growth-associated chromate(VI) reduction in free and immobilized cell systems. Chemosphere 95, 535–540 (2014)CrossRefGoogle Scholar
  19. 19.
    Saadoun I.: Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel. J. Basic Microbiol. 42(6), 420–428 (2002)CrossRefGoogle Scholar
  20. 20.
    Malik, Z.A.: Degradation of Crude Oil by Soil Bacteria. Ph.D. Thesis. Quaid-i-Azam University, Islamabad (2009)Google Scholar
  21. 21.
    Rahman K., Rahman T.J., McClean S., Marchant R., Banat I.M.: Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol. Prog. 18(6), 1277–1281 (2002)CrossRefGoogle Scholar
  22. 22.
    Darvishi P., Ayatollahi S., Mowla D., Niazi A.: Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf. B Biointerfaces 84(2), 292–300 (2011)CrossRefGoogle Scholar
  23. 23.
    Rodrigues L.R., Teixeira J.A., van der Mei H.C., Oliveira R.: Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces 49(1), 79–86 (2006)CrossRefGoogle Scholar
  24. 24.
    Qazi M.A., Malik Z.A., Qureshi G.D., Hameed A., Ahmed S.: Yeast extract as the most preferable substrate for optimized biosurfactant production by rhlB gene positive Pseudomonas putida SOL-10 isolate. J. Bioremediat. Biodegrad. 4(204), 2 (2013)Google Scholar
  25. 25.
    Kouker G., Jaeger K.-E.: Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53(1), 211–213 (1987)Google Scholar
  26. 26.
    Shukor M., Dahalan F., Jusoh A., Muse R., Shamaan N., Syed M.: Characterization of a diesel-degrading strain isolated from a hydrocarbon-contaminated site. J. Environ. Biol. 30(1), 145–150 (2009)Google Scholar
  27. 27.
    Ijah, U.; Safiyan, U.; Abioye, O.: Comparative study of biodegradation of crude oil in soil amended with chicken droppings and NPK fertilizer. Sci. World J. 3(2), 63–67 (2008)Google Scholar
  28. 28.
    Bacosa H.P., Suto K., Inoue C.: Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int. Biodeterior. Biodegrad. 74, 109–115 (2012)CrossRefGoogle Scholar
  29. 29.
    Floodgate G.D.: The fate of petroleum in marine ecosystems. In: Atlas, R.M. (ed.) Petroleum Microbiology, pp. 355–398. MacMillan Publishing Co., New York (1984)Google Scholar
  30. 30.
    Bossert I., Bartha R.: The fate of petroleum in soil ecosystems. In: Atlas, R.M. (ed.) Petroleum Microbiology, pp. 434–476. MacMillan Publishing Co., New York (1984)Google Scholar
  31. 31.
    Pathak H.: Alcaligenes—the 4T engine oil degrader. J. Bioremediat. Biodegrad. 2, 4 (2011). doi: 10.4172/2155-6199.1000124 CrossRefGoogle Scholar
  32. 32.
    Li J.-L., Chen B.-H.: Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials 2(1), 76–94 (2009)CrossRefGoogle Scholar
  33. 33.
    Ghazali F.M., Rahman R.N.Z.A., Salleh A.B., Basri M.: Biodegradation of hydrocarbons in soil by microbial consortium. Int. Biodeterior. Biodegrad. 54(1), 61–67 (2004)CrossRefGoogle Scholar
  34. 34.
    Wu M., Chen L., Tian Y., Ding Y., Dick W.A.: Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ. Pollut. 178, 152–158 (2013)CrossRefGoogle Scholar
  35. 35.
    Xu, J.: Bioremediation of Crude Oil Contaminated Soil by Petroleum-Degrading Active Bacteria. In: Romero-Zerón, L. (ed.) Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites, InTech (2012).
  36. 36.
    Arulazhagan P., Vasudevan N., Yeom I.: Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int. J. Environ. Sci. Technol. 7(4), 639–652 (2010)CrossRefGoogle Scholar
  37. 37.
    Vinas M., Sabaté J., Espuny M.J., Solanas A.M.: Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71(11), 7008–7018 (2005)CrossRefGoogle Scholar
  38. 38.
    Hamann C., Hegemann J., Hildebrandt A.: Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173(1), 255–263 (1999)CrossRefGoogle Scholar
  39. 39.
    Assih E.A., Ouattara A.S., Thierry S., Cayol J.-L., Labat M., Macarie H.: Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int. J. Syst. Evol. Microbiol. Syst. 52(2), 559–568 (2002)CrossRefGoogle Scholar
  40. 40.
    Fernández-Luqueño F., Valenzuela-Encinas C., Marsch R., Martínez-Suárez C., Vázquez-Núñez E., Dendooven L.: Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ. Sci. Pollut. Res. 18(1), 12–30 (2011)CrossRefGoogle Scholar
  41. 41.
    Thavasi R., Jayalakshmi S., Banat I.M.: Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresour. Technol. 102(2), 772–778 (2011)CrossRefGoogle Scholar
  42. 42.
    Kumar M., León V., Materano A.D.S., Ilzins O.A., Luis L.: Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J. Microbiol. Biotechnol. 24(7), 1047–1057 (2008)CrossRefGoogle Scholar
  43. 43.
    Tuleva B., Christova N., Jordanov B., Nikolova-Damyanova B., Petrov P.: Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Zeitschrift fur Naturforschung C—J. Biosci. 60(7–8), 577–582 (2005)Google Scholar
  44. 44.
    Sorkhoh N., Ibrahim A., Ghannoum M., Radwan S.: High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl. Microbiol. Biotechnol. 39(1), 123–126 (1993)CrossRefGoogle Scholar
  45. 45.
    Annweiler E., Richnow H., Antranikian G., Hebenbrock S., Garms C., Franke S., Francke W., Michaelis W.: Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl. Environ. Microbiol. 66(2), 518–523 (2000)CrossRefGoogle Scholar
  46. 46.
    Raza C., Liaqat S., Bashir S., Naseer M., Ishrat N.: Characterization of crude oil contaminated soil bacteria and laboratory-scale biodegradation experiments. Biologia (Pakistan) 57(1&2), 47–53 (2011)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2015

Authors and Affiliations

  1. 1.Department of MicrobiologyShah Abdul Latif UniversityKhairpurPakistan
  2. 2.Department of MicrobiologyQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.Department of AnatomyPeople’s University of Medical and Health Sciences for WomenShaheed BenazirabadPakistan

Personalised recommendations