Advertisement

Arabian Journal for Science and Engineering

, Volume 41, Issue 2, pp 661–668 | Cite as

Analysis of Contact Phenomena and Heat Exchange in the Cutting Zone Under Minimum Quantity Cooling Lubrication conditions

  • Radoslaw W. Maruda
  • Eugene Feldshtein
  • Stanislaw Legutko
  • Grzegorz M. KrolczykEmail author
Open Access
Research Article - Mechanical Engineering

Abstract

The paper critically investigates about the influence of emulsion mist cooling on the conditions of heat absorption from the machining zone. The cooling conditions under which the total number of drops falling on the hot surfaces of the machining zone evaporate have been studied. The state of cutting wedges made of P25 sintered carbide after finish turning of two-phase pearlite-ferrite AISI 1045 steel with the presence of an anti-seizure and anti-wear additive has been subjected to scanning inspection. In the contact area, the content of surface active compounds is much larger as compared to the areas beyond the contact. It has been observed that the concentration of active compounds on the surface grows by about three times. This phenomena provides confirmatory evidences of favourable machining conditions.

Keywords

MQCL Turning Sustainability manufacturing Scanning electron microscopy (SEM) Thermally activated processes 

List of symbols

MQCL

Minimum quantity cooling lubrication

MQL

Minimum quantity lubrication

EP

Extreme pressure

AW

Anti-wear

\({\kappa_{r}}\)

Tool major cutting edge angle (°)

\({\kappa_{r}^{\prime}}\)

Tool minor cutting edge angle (°)

\({\gamma}\)

Rake angle (°)

\({\alpha_{0}}\)

Clearance angle (°)

rε

Corner radius (mm)

AISI

American Iron and Steel Institute

ReH  min

Yield point (MPa)

Rm

Tensile strength (MPa)

A5

Ultimate longitudinal elongation

HB

Brinell hardness

ap

Depth of cut (mm)

f

Feed rate (mm/rev)

vc

Cutting speed (m/min)

P

Air flow volume (m3/h)

E

Mass flow of emulsion (g/min)

L

Nozzle distance from the machining zone (m)

D

Drop diameter on the contact surface (\({\mu}\)m)

d

Drop diameter in air (\({\mu}\)m)

t1

Drop heating time (s)

t2

Drop evaporation time (s)

\({\alpha}\)

Heat diffusivity coefficient (W/m2K)

cp

Volumetric specific heat of water (J/kg K)

\({\Theta _{0}}\)

Medium temperature at the nozzle outlet (K)

\({\Theta _{\rm n}}\)

Drop saturation temperature (K)

Vdroplet

Drop volume in air (\({\mu}\)m3)

N

Number droplets (pcs/mm2)

Asurf

Wetting area (%)

r

Water evaporation heat (J/kg)

\({{\it \Theta} _{s}}\)

Heated surface temperature (K)

\({{\rho}}\)

Water density (kg/m3)

References

  1. 1.
    Byrne G., Dornfeld D., Denkena B.: Advancing cutting technology. Ann. CIRP 52, 483–507 (2003)CrossRefGoogle Scholar
  2. 2.
    Narutaki N., Yamane Y., Tashima S., Kuroki H.: A new advanced ceramic for dry machining. Ann. CIRP 46, 43–48 (1997)CrossRefGoogle Scholar
  3. 3.
    Klocke F., Eisenblaetter G.: Machinability investigation of the drilling process using minimal cooling lubrication techniques. Prod. Eng. 4, 19–24 (1997)Google Scholar
  4. 4.
    Lawal S.A., Choudhury I.A., Nukman Y.: A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J. Clean. Prod. 41, 210–221 (2013)CrossRefGoogle Scholar
  5. 5.
    Hadad M., Sadeghi B.: Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J. Clean. Prod. 54, 332–343 (2013)CrossRefGoogle Scholar
  6. 6.
    Fratila D.F., Caizar C.: Assessment of cooling effect and surface quality to face milling of AlMg3 using several cooling lubrication methods. Mater. Manuf. Process. 27, 291–296 (2012)CrossRefGoogle Scholar
  7. 7.
    Aoyama T., Kakinuma Y., Yamashita M., Aoki M.: Development of a new lean lubrication system for near dry machining process. CIRP Ann. Manuf. Technol. 57, 125–128 (2008)CrossRefGoogle Scholar
  8. 8.
    Jun M.B.G., Joshi S.S., DeVor R.E., Kapoor S.G.: An experimental evaluation of an atomization-based cutting fluid application system for micromachining. J. Manuf. Sci. Eng. 130, 0311181–0311188 (2008)CrossRefGoogle Scholar
  9. 9.
    Klocke F.; Gerschwiler K.: Minimalmengenschmierung—systeme, Medien, Einsatzbeispiele und ökonomische Aspekte der Trockenbearbeitung, Trockenbearbeitung von Metallen, Proc. of the VDI-Seminar, Stuttgart, Mar. vol. 18, pp. 2.1–2.20 (2003)Google Scholar
  10. 10.
    Gaitonde V.N., Karnik S.R., Paolo Davim J.: Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass. J. Mater. Process. Technol. 204, 459–464 (2008)CrossRefGoogle Scholar
  11. 11.
    Simpson A.T., Stear M., Groves J.A., Piney M., Bradley S.D., Stagg S., Crook B.: Occupational exposure to metalworking fluid mist and sump fluid contaminants. Ann. Occup. Hyg. 47, 17–30 (2003)CrossRefGoogle Scholar
  12. 12.
    Aoyama T.: Development of a mixture supply system for machining with minimal quantity lubrication. CIRP Ann. Manuf. Technol. 51, 289–292 (2002)CrossRefGoogle Scholar
  13. 13.
    Sarikaya M., Gullu A.: Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. J. Clean. Prod. 65, 604–616 (2014)CrossRefGoogle Scholar
  14. 14.
    Sanchez J.A., Pombo I., Alberdi R., Izquierdo B., Ortega N., Plaza S., Martinez-Toledano J.: Machining evaluation of a hybrid MQL-CO2 grinding technology. J. Clean. Prod. 18, 1840–1849 (2010)CrossRefGoogle Scholar
  15. 15.
    Krolczyk G.M., Legutko S.: Experimental analysis by measurement of surface roughness variations in turning process of duplex stainless steel. Metrol. Meas. Syst. XXI, 759–770 (2014)Google Scholar
  16. 16.
    Krolczyk G., Legutko S., Nieslony P., Gajek M.: Study of the surface integrity microhardness of austenitic stainless steel after turning. Tehnički Vjesn. Techn. Gaz. 21, 1307–1311 (2014)Google Scholar
  17. 17.
    Zhang S., Li J.F., Wang Y.W.: Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J. Clean. Prod. 32, 81–87 (2012)CrossRefGoogle Scholar
  18. 18.
    Adler D.P., W-S. Hii W., Michalek D.J., Sutherland J.W.: Examining the role of gutting fluids and efforts to address associated environmental/health concerns. Mach. Sci. Technol. 10, 23–58 (2006)CrossRefGoogle Scholar
  19. 19.
    Li C.H., Hou Y.L., Xiu S.C., Cai G.Q.: Application of lubrication theory to near-dry-green grinding—feasibility analysis. Adv. Mater. Res. 44(−46), 135–142 (2008)Google Scholar
  20. 20.
    Khan, A. A.: Role of heat transfer on process characteristics during electrical discharge machining. Developments in Heat Transfer. pp. 417–436 (2011)Google Scholar
  21. 21.
    Park K.H., Olortegui-Yume J., Yoon M.C., Kwon P.: A study on droplets and their distribution for minimum quantity lubrication. Int. J. Machine Tools Manuf. 50, 824–833 (2010)CrossRefGoogle Scholar
  22. 22.
    Yashcheritsyn, P.I.; Feldshtein, E.E.; Kutser, V.M.; Sharaf, A.H.; Diallo, U.: Modeling and study of thermal processes in the technological machining system using finite element method. Proceedings of the National Academy of Sciences of Belarus, Series of Physic-Technical Sciences. vol. 1, pp. 112–117 (1991) (in Russian).Google Scholar
  23. 23.
    Feldshtein E., Maruda R.: Analysis of the cutting force and heat sink changes when turning of C45 steel in MQCL conditions on the basis of computer modeling. Int. J. Appl. Mech. Eng. 15, 1037–1045 (2010)Google Scholar
  24. 24.
    Krolczyk G.M., Nieslony P., Legutko S.: Determination of tool life and research wear during duplex stainless steel turning. Arch. Civil Mech. Eng. 15, 347–354 (2015)CrossRefGoogle Scholar
  25. 25.
    Kummel J., Gibmeier J., Muller E., Schneider R., Schulze V., Wanner A.: Detailed analysis of microstructure of intentionally formed built-up edges for improving wear behaviour in dry metal cutting process of steel. Wear 311, 21–30 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Radoslaw W. Maruda
    • 1
  • Eugene Feldshtein
    • 1
  • Stanislaw Legutko
    • 2
  • Grzegorz M. Krolczyk
    • 3
    Email author
  1. 1.Faculty of Mechanical EngineeringUniversity of Zielona GoraZielona GoraPoland
  2. 2.Faculty of Mechanical Engineering and ManagementPoznan University of TechnologyPoznanPoland
  3. 3.Faculty of Production Engineering and LogisticsOpole University of TechnologyOpolePoland

Personalised recommendations