Advertisement

Arabian Journal for Science and Engineering

, Volume 40, Issue 9, pp 2805–2812 | Cite as

Fuzzy Decoupling Control of Greenhouse Climate

  • M. AzazaEmail author
  • K. Echaieb
  • F. Tadeo
  • E. Fabrizio
  • A. Iqbal
  • A. Mami
Research Article - Systems Engineering

Abstract

Greenhouses are complex and nonlinear systems in which the inside temperature and humidity are deterministic parameters for the optimal growth of the plants. Several control methods have been developed to get an optimized microclimate. Physically both parameters are strongly coupled; hence, this paper proposes a novel fuzzy controlling method considering the temperature and humidity’s coupling effects; the controller is based on a validated greenhouse physical model and an evaluation of the correlation of both parameters. The results show the high performance of the decoupling method and the effectiveness of the fuzzy controller to manage the inside climate while saving energy.

Keywords

Microclimate Control Fuzzy controller Decoupling Energy savings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fargues J., Vidal C., Smits N., Rougier M., Boulard T., Mermier M., Nicot P., Reich P., Jeannequin P., Ridray G., Lagier J.: Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean glasshouse tomato. Biol. Control 28, 320–331 (2003)CrossRefGoogle Scholar
  2. 2.
    Fargues J., Smits N., Rougier M., Boulard T., Ridray G., Lagier J., Jeannequin B., Fatnassi H., Mermier M.: Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean greenhouse tomato. Biological Control 32, 461–472 (2005)CrossRefGoogle Scholar
  3. 3.
    Joop C.L.: The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57, 1–20 (2012)CrossRefGoogle Scholar
  4. 4.
    Hahn F.: Fuzzy controller decreases tomato cracking in greenhouses. Comput. Elect. Agric. 77, 21–27 (2011)CrossRefGoogle Scholar
  5. 5.
    Ferreira P.M., Faria E.A., Ruano A.E.: Neural network models in greenhouse air temperature prediction. Neurocomputing 4, 51–75 (2002)CrossRefGoogle Scholar
  6. 6.
    Rodríguez F., Guzmán J.L., Berenguel M., Arahal M.R.: Adaptive hierarchical control of greenhouse crop production. Int. J. Adapt. Control Signal Process. 22, 180–197 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Udink ten Cate A.J.: Modeling and (adaptive) control of greenhouse climates. Ph.D thesis. Agricultural University of Wageningen (1983)Google Scholar
  8. 8.
    Pasgianos G.D., Arvanitis K.G., Polycarpouc P., Sigrimis N.: A nonlinear feedback technique for greenhouse environmental control. Comput. Electron. Agric. 40, 153–177 (2003)CrossRefGoogle Scholar
  9. 9.
    Xi-Wen L.; Tie-Feng D.: Design for Fuzzy Decoupling Control System of Temperature and Humidity. In: International Conference Communications in Computer and Information Science, China, pp. 231–236 (2011)Google Scholar
  10. 10.
    Fang X., Jiaoliao C., Libin Z., Hongwu Z.: Real coded genetic algorithm for optimizing fuzzy logic control of greenhouse microclimate. Intell. Control Autom. Lect. Notes in Control Inf. Sci. 344, 571–577 (2006)Google Scholar
  11. 11.
    Tien B.T., Van Straten G.: A neuro-fuzzy approach to identify lettuce growth and greenhouse climate. Artif. Intell. Biol. Agric. 12, 71–93 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ronghua J., Lijun Q., Zicheng H.: Design of fuzzy control algorithm for precious irrigation system in greenhouse. Comput. Comput. Technol. Agric. V IFIP Adv. Inf. Commun. Technol. 370, 278–283 (2012)Google Scholar
  13. 13.
    Irineo, L.; López, C.; Efrén, F.R.; Juan Carlos T.M.; Elmer, C.T.Z.; Agustín, R.G.; Armando R.A.: Control Strategies of Greenhouse Climate for Vegetables Production. In: Biosystems Engineering: Biofactories for Food Production in the Century XXI, pp. 401–421 (2014)Google Scholar
  14. 14.
    Zhuhong Z.: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control. Appl. Soft Comput. 8, 959–971 (2008)CrossRefGoogle Scholar
  15. 15.
    Ganguly A., Ghosh S.: Model development and experimental validation of a floriculture greenhouse under natural ventilation. Energy Build. 41, 521–527 (2009)CrossRefGoogle Scholar
  16. 16.
    Jun D., Pradeep B., Bo H.: Simulation model of a greenhouse with a heat-pipe heating system. Appl. Energy 93, 268–276 (2012)CrossRefGoogle Scholar
  17. 17.
    Kolokotsa D., Saridakis G., Dalamagkidis K., Dolianitis S., Kaliakatsos I.: Development of an intelligent indoor environment and energy management system for greenhouses. Energy Convers. Manag. 51, 155–168 (2010)CrossRefGoogle Scholar
  18. 18.
    Singh G., Parm P.S., Prit P.S., Lubana K.G.S.: Formulation and validation of a mathematical model of the microclimate of a greenhouse. Renew. Energy 31, 1541–1560 (2006)CrossRefGoogle Scholar
  19. 19.
    Atyah N., Afif H.: Modeling of greenhouse with PCM energy storage. Energy Convers. Manag. 49, 3338–3342 (2008)CrossRefGoogle Scholar
  20. 20.
    Thirumal P., Amirthagadeswaran K.S., Jayabal S.: Optimization of IAQ characteristics of an air-conditioned car using GRA and RSM. J. Mech. Sci. Technol. 28, 1899–1907 (2014)CrossRefGoogle Scholar
  21. 21.
    Ashish S., Tiwari G.N., Sodha M.S.: Thermal modeling for greenhouse heating by using thermal curtain and an earth–air heat exchanger. Build. Environ. 41, 843–850 (2006)CrossRefGoogle Scholar
  22. 22.
    Jolliet O.: Hortitrans model for predicting and optimizing humidity and transpiration in greenhouses. J. Agric. Eng. 57, 23–37 (1994)CrossRefGoogle Scholar
  23. 23.
    Linker R., Kacira M., Arbel A.: Robust climate control of a greenhouse equipped with variable-speed fans and a variable-pressure fogging system. Biosyst. Eng. 110, 153–167 (2011)CrossRefGoogle Scholar
  24. 24.
    Salgado P., Boaventura J.C.: Greenhouse climate hierarchical fuzzy modeling. Control Eng. Pract. 13, 613–628 (2005)CrossRefGoogle Scholar
  25. 25.
    Mortensen L.M.: Effects of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species. Sci. Hortic. 86, 299–310 (2000)CrossRefGoogle Scholar
  26. 26.
    Uma Devi K., Sridevi V., Murali M.C., Padmavathi J.: Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J. Invertebr. Pathol. 88, 181–189 (2005)CrossRefGoogle Scholar
  27. 27.
    Pasgianos G.D., Arvanitis K.G., Polycarpou P., Sigrimis N.: A nonlinear feedback technique for greenhouse environmental control. Comput. Electron. Agric. 40, 153–177 (2003)CrossRefGoogle Scholar
  28. 28.
    Bennis N., Duplaix J., Enéa G., Haloua M., Youlal H.: Greenhouse climate modelling and robust control. Comput. Electron. Agric. 61, 96–107 (2008)CrossRefGoogle Scholar
  29. 29.
    Iliev L., Zakeri A., Sazdov P., Baytelieva A.M.: A fuzzy logic based approach for integrated control of protected cultivation. World Appl. Sci. J. 24, 561–569 (2013)Google Scholar
  30. 30.
    Stanghellini C., De Jong T.: A model of humidity and its applications in a greenhouse. Agric. For. Meteorol. 76, 129–148 (1995)CrossRefGoogle Scholar
  31. 31.
    Babuska R.: Fuzzy Modeling for Control. Kluwer Academic Publishers, New York (1998)CrossRefGoogle Scholar
  32. 32.
    Abonyi J.: Fuzzy Model Identification for Control. Birkhauser, New York (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2015

Authors and Affiliations

  • M. Azaza
    • 1
    Email author
  • K. Echaieb
    • 1
  • F. Tadeo
    • 2
  • E. Fabrizio
    • 3
  • A. Iqbal
    • 4
  • A. Mami
    • 1
  1. 1.Lab of Research in Analysis Design and Control Systems, Faculty of Mathematical, Physical and NaturalTunis El Manar UniversityTunisTunisia
  2. 2.Industrial Engineering SchoolUniversidad de ValladolidValladolidSpain
  3. 3.Department of Agricultural, Forest and Food SciencesUniversity of TorinoGrugliascoItaly
  4. 4.Department of Electrical EngineeringCollege of Engineering Qatar UniversityDohaQatar

Personalised recommendations