Arabian Journal for Science and Engineering

, Volume 40, Issue 6, pp 1657–1667 | Cite as

Performance Characteristic Analysis of Automated Robot Spray Painting Using Taguchi Method and Gray Relational Analysis

  • R. BhalamuruganEmail author
  • S. Prabhu
Research Article - Mechanical Engineering


This study investigates the performance characteristics of an industrial robot ABB-IRB1410 for an automated painting process using Taguchi orthogonal array (OA) and gray relational analysis (GRA) and compared with the manual painting method using HVLP gun. The multi-response process is converted into single objective and optimized using GRA. The method established in this study combines both OA and GRA. The experiment is designed using Taguchi’s L9 OA. The foremost objective of this experiment is to identify the control parameters for the improved quality of paint coating measured in terms of thickness variation, surface roughness and film adhesion. In addition to that analysis of variance and regression analysis are carried out to find the influencing parameters on each response variables individually and to build the mathematical model, respectively. Also the GRA result is compared with the optimized value determined by the exhaustive search method.


Robot Automated paint Gray relational analysis Taguchi analysis Regression analysis ANOVA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papasavva S., Kia S., Claya J., Gunther R.: Characterization of automotive paints: an environmental impact analysis. Prog. Org. Coat. 43(1), 193–206 (2001)CrossRefGoogle Scholar
  2. 2.
    Muzan I.W., Faisal T., Al-Assadi H.M.A.A., Iwan M.: Implementation of industrial robot for painting applications. Procedia Eng. 41, 1329–1335 (2012)CrossRefGoogle Scholar
  3. 3.
    Endregaard E.A.: Paint robotics—improving automotive painting performance. Met. Finish. 100(5), 8–13 (2002)CrossRefGoogle Scholar
  4. 4.
    Talbert R.: Paint Technology Handbook. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  5. 5.
    Streitberger, H.J.; Dossel, K.F. (eds.): Automotive Paints and Coatings. Wiley, Hoboken (2008)Google Scholar
  6. 6.
    Jassbi J., Alborzi M, Ghoreshi F.: Car paint thickness control using artificial neural network and regression method. J. Ind. Eng. Int. 7(14), 1–6 (2011)Google Scholar
  7. 7.
    Prendi L., Ali A., Henshaw P., Mancina T., Tighe C.: Implementing DOE to study the effect of paint application parameters, film build, and dehydration temperature on solvent pop. J. Coat. Technol. Res. 5(1), 45–56 (2008)CrossRefGoogle Scholar
  8. 8.
    Yu, S.; Cao, L.: Modeling and prediction of paint film deposition rate for robotic spray painting. In Mechatronics and Automation (ICMA), 2011 International Conference on (pp. 1445–1450). IEEE (2011, August)Google Scholar
  9. 9.
    From P.J., Gravdahl J.T.: A real-time algorithm for determining the optimal paint gun orientation in spray paint applications. IEEE Trans. Autom. Sci. Eng. 7(4), 803–816 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen H., Xi N.: Automated tool trajectory planning of industrial robots for painting composite surfaces. Int. J. Adv. Manuf. Technol. 35(7–8), 680–696 (2008)CrossRefGoogle Scholar
  11. 11.
    Tarng Y.S., Yang W.H.: Application of the Taguchi method to the optimization of the submerged arc welding process. Mater. Manuf. Process 13(3), 455–467 (1998)CrossRefGoogle Scholar
  12. 12.
    Taguchi G.: Introduction to Quality Engineering. Asian Productivity Organization, Tokyo (1990)Google Scholar
  13. 13.
    Prabhu S., Vinayagam B.K.: AFM nano analysis of inconel 825 with single wall carbon nano tube in die sinking EDM process using taguchi analysis. Arabian J. Sci. Eng. 38(6), 1599–1613 (2013)CrossRefGoogle Scholar
  14. 14.
    Pinar A.M.: Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arabian J. Sci. Eng. 38(3), 705–714 (2013)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Phadke M.S.: Quality Engineering Using Robust Design. Prentice-Hall, Englewood Cliffs (1989)Google Scholar
  16. 16.
    Ross P.J.: Taguchi Techniques for Quality Engineering. McGraw-Hill, New Delhi (2005)Google Scholar
  17. 17.
    Eşme U.: Application of Taguchi method for the optimization of resistance spot welding process. Arabian J. Sci. Eng. 34(2), 519 (2009)Google Scholar
  18. 18.
    Thakur A.G., Nandedkar V.M.: Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method. Arabian J. Sci. Eng. 39(2), 1171–1176 (2014)CrossRefGoogle Scholar
  19. 19.
    Lin J.L., Tarng Y.S.: Optimization of the multi-response process by the Taguchi method with grey relational analysis. J. Grey Syst. 10(4), 355–370 (1998)Google Scholar
  20. 20.
    Deng J.: Introduction to Grey system. J. Grey Syst. 1(1), 1–24 (1989)zbMATHGoogle Scholar
  21. 21.
    Kwon J.H., Jung W.T.: Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis. J. Mech. Sci. Technol. 24(5), 1083–1090 (2010)CrossRefGoogle Scholar
  22. 22.
    Tosun N.: Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis. Int. J. Adv. Manuf. Technol. 28(5–6), 450–455 (2006)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2015

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSRM UniversityChennaiIndia

Personalised recommendations