Arabian Journal for Science and Engineering

, Volume 40, Issue 2, pp 571–581 | Cite as

Dry Sliding Wear Characteristics of SiC and Al2O3 Nanoparticulate Aluminium Matrix Composite Using Taguchi Technique

  • Kiran Kumar EkkaEmail author
  • S. R. Chauhan
  • Varun
Research Article - Mechanical Engineering


This paper investigates the sliding wear behaviour of nanoparticle-filled aluminium matrix nano-composites (AMNCs). Two different nano-reinforcements undertaken for this study are SiC and Al2O3. The percentage reinforcement is also varied from 0.5 to 1.5 wt%. For investigating the wear behaviour, factors such as applied normal load, sliding speed and sliding distance are considered. Also Taguchi design of experimental technique is employed for the study and analysis of sliding wear. Findings showed that nano-SiC particulate-reinforced AMNCs show better wear resistance than nano-Al2O3-reinforced AMNCs. Also regression and artificial neural network are used to develop a model to predict the wear rate of these composites.


Metal matrix nano-composites (MMNCs) Wear Taguchi Neural network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Orbulov I.N., Ginsztler J., Kun P.: Infiltration characteristics and compressive behaviour of metal matrix syntactic foams. Mater. Sci. Forum 729, 68–73 (2013)CrossRefGoogle Scholar
  2. 2.
    Orbulov, I.N.; Májlinger, K.: Description of the compressive response of metal matrix syntactic foams. Mater. Des. 49, 1–9 (2013)Google Scholar
  3. 3.
    Orbulov I.N., Májlinger K.: Microstructure of metal—matrix composites reinforced by ceramic microballoons. Mater. Technol. 46, 375–82 (2013)Google Scholar
  4. 4.
    Orbulov I.N.: Compressive properties of aluminium matrix syntactic foams. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 555, 52–56 (2012)Google Scholar
  5. 5.
    Wang S., Wang Y., Li C., Chi Q., Fei Z.: The dry sliding wear behavior of interpenetrating titanium trialuminide/aluminium composites. Appl. Compos. Mater. 14, 129–144 (2007)CrossRefGoogle Scholar
  6. 6.
    Messler, Jr.; Robert, W.: Joining composite materials and structures. Mater. Struct. 647–696 (2004)Google Scholar
  7. 7.
    Kang Y.C., Chan S.L.: Tensile properties of nanometric Al2O3 particulate-reinforced aluminium matrix composites. Mater. Chem. Phys. 85, 438–443 (2004)CrossRefGoogle Scholar
  8. 8.
    Molina-Aldareguia J.M., Reyes E.M.: Metal matrix composites reinforced with nano-size reinforcements. Compos. Sci. Technol. 70, 2227 (2010)CrossRefGoogle Scholar
  9. 9.
    Yingguang L., Jianqiu Z., Tongde S.: Effect of nano-metal particles on the fracture toughness of metal—ceramic composite. Mater. Des. 45, 67–71 (2013)CrossRefGoogle Scholar
  10. 10.
    Sahin Y.: Tribological behaviour of metal matrix and its composite. Mater. Des. 28, 1348–1352 (2007)CrossRefGoogle Scholar
  11. 11.
    Ravindran P., Manisekar K., Narayanasamy P., Selvakumar N., Narayanasamy R.: Application of factorial techniques to study the wear behaviour of Al hybrid composites with graphite addition. Mater. Des. 39, 42–54 (2012)CrossRefGoogle Scholar
  12. 12.
    Yamagushi K., Takakura N., Imatani S.: Compaction and sintering characteristics of composite metal powder. J. Mater. Process. Technol. 63, 346 (1997)Google Scholar
  13. 13.
    Lee, H.S.; Yeo, J.S.; Hong, S.H.; Yoon, D.J.; Na, K.H.: The fabrication process andmechanical properties of SiCp/Al–Simetalmatrix composites for automobile air-conditioner compressor pistons. J. Mater. Process. Technol. 113, 202–208 (2001)Google Scholar
  14. 14.
    Manna I., Nandi P., Bandyopadhyay B., Ghoshray K., Ghoshray A.: Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al–Ti–Si composites prepared by mechanical alloying. Acta. Mater. 52, 4133–4142 (2004)CrossRefGoogle Scholar
  15. 15.
    Hassan S.F., Gupta M.: Development of high-performance magnesium nano-composites using solidification processing route. Mater. Sci. Technol. 20, 1383–1388 (2004)CrossRefGoogle Scholar
  16. 16.
    Sankaranarayanan S., Sabat R.K., Jayalakshmi S., Suwas S., Gupta M.: Effect of nano scaleboron carbide particle addition on the microstructural evolution and mechanical response of pure magnesium. Mater. Des. 56, 428–436 (2014)CrossRefGoogle Scholar
  17. 17.
    Hassan S., Gupta M.: Development of high performance magnesium nanocomposite using nano-Al2O3 as reinforcement. Mater. Sci. Eng. A 392, 163–168 (2005)CrossRefGoogle Scholar
  18. 18.
    Tun K., Jayaramanavar P., Nguyen Q., Chan J., Kwok R., Gupta M.: Investigation into tensile and compressive responses of Mg–ZnO composites. Mater. Sci. Technol. 28, 582–588 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhou D.S., Tang J., Qiu F., Wang J.G., Jiang Q.C.: Effects of nano-TiCp on the microstructures and tensile properties of TiCp/Al–Cu composites. Mater. Charact. 94, 80–85 (2014)CrossRefGoogle Scholar
  20. 20.
    Melendez I.M., Neubauer E., Angerer P., Danninger H., Torralba J.M.: Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites. Compos. Sci. Technol. 71, 1154–1162 (2011)CrossRefGoogle Scholar
  21. 21.
    Liu Y., Han Z., Cong H.: Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite. Wear 268, 976–983 (2010)CrossRefGoogle Scholar
  22. 22.
    Zhang Y.S., Wang K., Han Z., Liu G.: Dry sliding wear behavior of copper with nano-scaled twins. Wear 262, 1463–1470 (2007)CrossRefGoogle Scholar
  23. 23.
    La P.Q., Ma J.Q., Zhu Y.T., Yang J., Lu W.M., Xue Q.J., Valiev R.Z.: Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater. 53, 5167–5173 (2005)CrossRefGoogle Scholar
  24. 24.
    Zhang Y.S., Han Z., Wang K., Lu K.: Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260, 942–948 (2006)CrossRefGoogle Scholar
  25. 25.
    Iglesias P., Bermudez M.D., Moscoso W., Rao B.C., Shankar M.R., Chandrasekar S.: Friction and wear of nanostructured metals created by large strain extrusion machining. Wear 263, 636–642 (2007)CrossRefGoogle Scholar
  26. 26.
    Ravindran P., Manisekar K., Vinoth Kumar S., Rathika P.: Investigation of microstructure and mechanical properties of aluminium hybrid nano-composites with the additions of solid lubricant. Mater. Design 51, 448–456 (2013)CrossRefGoogle Scholar
  27. 27.
    Al-Qutub, A.M.: Effect of heat treatment on friction and wear behavior of Al-6061 composite reinforced with 10 % submicron Al2O3 particles. Arabian J. Sci. Eng. 34(1B) (2009)Google Scholar
  28. 28.
    Al-Dheylan, K.; Hafeez, S.: Tensile failure micromechanisms of 6061 aluminum reinforced with submicron Al2O3 metal—matrix composites. Arabian J. Sci. Eng. 31(2C) (2006)Google Scholar
  29. 29.
    Aleksendric D.: Neural network prediction of brake friction materials wear. Wear 268, 117–125 (2010)CrossRefGoogle Scholar
  30. 30.
    Tsao, C.C.; Hocheng, H.: Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J. Mater. Process. Technol. 203, 342–348 (2008)Google Scholar
  31. 31.
    Bernardos P.G., Vosniakos G.C.: Prediction of surface roughness in CNC face milling using neural network and Taguchi’s design of experiments. Robot. Comput. Integr. Manuf. 18, 343–354 (2002)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum and Minerals 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of TechnologyHamirpurIndia

Personalised recommendations